合并两个有序数组(详解)

合并两个有序数组(详解)

合并两个有序数组

题目:

给你两个按 非递减顺序 排列的整数数组 nums1nums2,另有两个整数 mn ,分别表示 nums1nums2 中的元素数目。

请你 合并 nums2nums1 中,使合并后的数组同样按 非递减顺序 排列。

**注意:**最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n

示例:

示例 1:

输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:

输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:

输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。

对于这个问题,我们先来看一个之前我们熟悉的思路

思路1:

我们把nums2数组的元素 放到 nums1数组里面去 然后再用冒泡排序去对nums1进行排序。

这个思路是可以的 但是我们知道冒泡排序的由于有两个for循环嵌套,效率没有那么理想, 因此我们这个时候就可以考虑另外一个思路

思路2:

  1. 我们可以采用三指针法。创建三个指针l1,l2,l3
  2. 我们让第二个数组的数据合并到第一个数组中
  3. 让l1,l2,l3分别指向第一个有序数组的最后一个有效数字,第二个有序数组的最后一个有效数字,第一个数组的最后一个有效空间
  4. 让l1和l2指向的数字去进行对比 ,l1大就放到l3去,并让l3-- ,l1–。l2大就让l2放到l3中去,并让l3–,l2–。
  5. 一直对比直至,让l1或者l2 出了边界

如图所示:

image-20240418182123239

对于这个题目来说,我们需要分类讨论

第一种情况:(l1先出了边界)

l1 和 l2 指向的数字进行比较,谁大谁就放到l3

并且和l3一起–

但是由于l1先出了循环 导致nums2 还有数字没有存放到l1中

如图所示:

image-20240418182653981

因此我们还需要将剩余的数字放到nums1中

我们通过循环 去把nums2中的数据去放到l3中

每放一个数字 l2和l3都要–

image-20240418182812022

第二种情况:(l2先出边界)

这个情况是不需要做额外处理的,因为两个数组本身就是有序的,如果l2的数据已经全部排序到l1中,那么此时l1就是有序的

如图所示:

image-20240418182123239

void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{

    // 创建三个变量分别指向 l1 和 l2 的最后一个有效数字,以及l1的最后一个空间
    int l1,l2,l3;
    l1 = m - 1;
    l2 = n - 1;
    l3 = n + m - 1;

    while(l1 >= 0 && l2 >= 0)
    {
        if(nums1[l1] < nums2[l2])
        {
            nums1[l3] = nums2[l2];
            l2--;
            l3--;
        }
        else
        {
            nums1[l3] = nums1[l1];
            l1--;
            l3--;
        }
    }
   // 走到这里 不是l1出边界 就是l2 出边界  但是我们只需要对l1出边界的情况处理
   // 因为l1出边界就代表l2还有数据没有合并到l1  
   // 如果是l2出边界就代表此时l1的数据已经是有序得了  因为原本两个数组就是有序的
    while(l2>=0)
    {
        nums1[l3] = nums2[l2];
        l3--;
        l2--;
    }
}

优化一小下:

void merge(int* nums1, int m, int* nums2, int n)
{
    // 首先我们创建三个int变量作为下标  
    // l1指向nums1的最后一个数字 l2指向nums2的最后一个数字 l3指向nums1的最后一个空间
    int l1, l2, l3;
    l1 = m - 1;
    l2 = n - 1;
    l3 = m + n - 1;

    while (l1 >= 0 && l2 >= 0) // 只要l1 和 l2 < 0 就要退出循环 单独处理
    {
        // 判断l1 和 l2 指向的数字谁大 谁大 就放到l3处
        if (nums1[l1] > nums2[l2])
        {
            nums1[l3--] = nums1[l1--]; // 别忘了--
        }
        else // 这里说明l2大
        {
            nums1[l3--] = nums2[l2--];
        }
    }

    // 走到这里说明 要不就排好了 要不就是l2 或者 l1 出了边界
    // 而我们只需要对l1出边界的情况做好处理  (因为l1和l2 不会同时出边界 如果l2出了边界就说明排好了)
    // l1出边界 就说明 nums2还有数字没有放到nums1中 
    while (l2 >= 0)
    {
        nums1[l3--] = nums2[l2--];
    }
}

int main()
{
    int nums1[] = { 1 };
    int nums2[] = {0};
    merge(nums1, 1, nums2, 0);
    for (int i = 0; i < 1; i++)
    {
        printf("%d ", nums1[i]); // 1
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值