排序:
默认
按更新时间
按访问量

滴滴插件化VirtualAPK框架原理解析(二)之Service 管理

在前一篇博客滴滴插件化框架VirtualAPK原理解析(一)之插件Activity管理 中VirtualAPK是如何对Activity进行管理的,本篇博客,我们继续来学习这个框架,这次我们学习的是如何去管理Service。Service工作原理分析说道如何对Service进行插件化,肯定得先了解...

2017-07-30 23:21:11

阅读数:2943

评论数:1

滴滴插件化框架VirtualAPK原理解析(一)之插件Activity管理

上周末,滴滴与360都开源了各自的插件化框架,Virtualapk与RePlugin,作为一个插件化方面的狂热研究者,在周末就迫不及待的下载了Virtualapk框架来进行研究,本篇博客带来的是Virtualapk原理解析的第一篇Activity管理,博客只是自己的理解,小弟才疏学浅,可能有很多理...

2017-07-02 21:15:48

阅读数:7293

评论数:5

从零开始学后端(4)——JDBC的重构设计

重构(Refactoring)就是通过调整程序代码,改善软件的质量、性能,使其程序的设计模式和架构更趋合理,提高软件的扩展性和维护性。 问题1:每个DAO方法中都会写:驱动名称/url/账号/密码,不利于维护. 如果现在我们从MySQL迁移到Oracle中去,此时就得修改每一个DAO方法的...

2018-08-05 23:36:50

阅读数:250

评论数:0

从零开始学后端(3)——JDBC基础

JDBC概述 什么是持久化(persistence): 持久化(persistence):把数据保存到可掉电式存储设备中以供之后使用。 保存数据: 内存中: 掉电之后,数据就没了....

2018-08-05 16:02:23

阅读数:517

评论数:0

从零开始学后端(2)——MySql常用语句

简单查询 语法: SELECT {*, column [alias],...} FROM table_name; SELECT <select_list> FROM table_name; 说明...

2018-08-05 14:25:34

阅读数:345

评论数:0

从零开始学后端(1)——MySql基础学习

启动MySQL服务 打开数据库连接之前:一定要保证MySQL服务已经开启了。那么如何启动MySQL服务?除了可以在安装的时候勾选随着开机自启动,还可以在运行 窗口(windows)为例子,输入以下内容: net start 命令名字:开启一个服务,如:net start MySQL net...

2018-08-03 18:15:57

阅读数:647

评论数:0

git常用命令

1.更新远程分支列表 git remote update origin –prune

2018-08-01 16:46:25

阅读数:621

评论数:0

详解java虚拟机方法调用

方法调用 方法调用并不等同于方法执行,方法调用阶段唯一的任务就是确定被调用方法的版本(即调用哪一个方法),暂时还不涉及方法内部的具体运行过程。 所有方法调用中的目标方法在Class文件里面都是一个常量池中的符号引用,在类加载的解析阶段,会将其中的一部分符号引用转化为直接引用,这种解析能成立的前...

2018-06-01 14:48:57

阅读数:1867

评论数:0

从TargetApi22升级到TargetApi26注意事项

最近谷歌爸爸要求在8月份,在googleplay上架的app必须升级到TargetApi26以上,作为常年使用TargetApi22的我,不得不去研究一下升级为TargetApi26的影响,主要如下: 1.运行时权限 如果你声明在清单文件的权限,这对用户的隐私或设备的操作不构成很大风险,系统会...

2018-06-01 14:47:39

阅读数:2596

评论数:0

再见2017,你好2018!

不知不觉2017年就这样过去了,毕业之后发现时间过的真的很快,2017年感觉技术上的提升还是较大的,相比2016年刚进入互联网的第一年,无论对于行业的认识还是技术的认识都更深入了,不过在2017年的最后两个月没能坚持每天看书,由于一些感情变故,导致最后两个月有点颓废,说多都是泪,分以下几点总结一下...

2018-01-01 09:31:56

阅读数:2467

评论数:3

Java数据结构与算法解析(十七)——斜堆

斜堆概述斜堆(Skew heap)也叫自适应堆(self-adjusting heap),它是左斜堆的一个变种。和左倾堆一样,它通常也用于实现优先队列;作为一种自适应的左斜堆,它的合并操作的时间复杂度也是O(lg n)。 它与左斜堆的差别是: (1) 斜堆的节点没有”零距离”这个属性,而左斜堆...

2017-12-08 08:49:14

阅读数:2087

评论数:0

Java数据结构与算法解析(十五)——左式堆

左式堆概述左式堆(leftist tree 或 leftist heap),又被成为左偏树、左倾堆,最左堆等。 它和二叉堆一样,都是优先队列实现方式。当优先队列中涉及到”对两个优先队列进行合并”的问题时,二叉堆的效率就无法令人满意了,而本文介绍的左式堆,则可以很好地解决这类问题。上图是一颗左倾树...

2017-11-15 09:15:49

阅读数:2100

评论数:1

Java数据结构与算法解析(十四)——二叉堆

二叉堆概述二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。 最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。二叉堆一般都通过”数组”来实现,下面是数组实现的最大堆和最小堆的示意图: 二叉堆的...

2017-11-01 09:18:49

阅读数:7731

评论数:0

Java数据结构与算法解析(十三)——优先级队列

在很多应用中,我们通常需要按照优先级情况对待处理对象进行处理,比如首先处理优先级最高的对象,然后处理次高的对象。最简单的一个例子就是,在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话。在这种情况下,我们的数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对...

2017-10-21 10:07:07

阅读数:10515

评论数:1

Java数据结构与算法解析(十二)——散列表

散列表概述散列表就是一种以 键-值(key-indexed) 存储数据的结构,我们只要输入待查找的值即key,即可查找到其对应的值。散列表的思路很简单,如果所有的键都是整数,那么就可以使用一个简单的无序数组来实现:将键作为索引,值即为其对应的值,这样就可以快速访问任意键的值。这是对于简单的键的情况...

2017-10-13 21:16:19

阅读数:7796

评论数:0

Java数据结构与算法解析(十一)——红黑树

前面一篇文章介绍了2-3查找树,2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgN,从而保证了最坏情况下的时间复杂度。但是2-3树实现起来比较复杂,本文介绍一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree)红黑树的介...

2017-10-11 09:46:24

阅读数:11194

评论数:2

Java数据结构与算法解析(十)——2-3树

二叉查找树对于大多数情况下的查找和插入在效率上来说是没有问题的,但是他在最差的情况下效率比较低。平衡查找树的数据结构能够保证在最差的情况下也能达到lgN的效率,要实现这一目标我们需要保证树在插入完成之后始终保持平衡状态,这就是平衡查找树(Balanced Search Tree)。在一棵具有N 个...

2017-10-01 08:16:12

阅读数:8298

评论数:4

Java数据结构与算法解析(九)——B树

B树简介定义在计算机科学中,B树(英语:B-tree)是一种自平衡的树,能够保持数据有序。这种数据结构能够让查找数据、顺序访问、插入数据及删除的动作,都在对数时间内完成。特点阶为M的B树是一颗具有以下特点的树: 1.数据项存储在树叶上 2.非叶子节点直到M-1个关键字以指示搜索的方向:关键字i...

2017-09-27 09:41:56

阅读数:11142

评论数:4

Java数据结构与算法解析(八)——伸展树

伸展树简介伸展树(Splay Tree)是特殊的二叉查找树。 它的特殊是指,它除了本身是棵二叉查找树之外,它还具备一个特点: 当某个节点被访问时,伸展树会通过旋转使该节点成为树根。这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点。特性1.和普通的二叉查找树相比,具有任何情况下、任何操作...

2017-09-22 23:48:24

阅读数:10578

评论数:3

Java数据结构与算法解析(六)——AVL树

之前我们说过普通二叉查找树的删除算法会使得左子树比右子树深,因为我们总是用右子树的一个来代替删除的节点。会造成二叉查找树,严重的不平衡。AVL树简介而AVL树就是解决普通二叉查找树弊端的方法,他是带有平衡条件的二叉查找树,这个平衡条件必须容易保持,而且它保证树的深度必须是O(logN).AVL树是...

2017-09-19 09:37:27

阅读数:15246

评论数:9

提示
确定要删除当前文章?
取消 删除
关闭
关闭