Python之----PCA算法处理图像与SVD算法处理图像

我们来分析一下这两个算法的各自特点:
1、PCA(principal component analysis)是一种数据降维的方式,能够有效的将高维数据转换为低维数据,进而降低模型训练所需要的计算资源。

##自适应求K值
import numpy as np
import cv2 as cv


# 数据中心化
def Z_centered(dataMat):
    rows, cols = dataMat.shape
    meanVal = np.mean(dataMat, axis=0)  # 按列求均值,即求各个特征的均值
    meanVal = np.tile(meanVal, (rows, 1))
    newdata = dataMat - meanVal
    return newdata, meanVal


# 最小化降维造成的损失,确定k
def Percentage2n(eigVals, percentage):
    sortArray = np.sort(eigVals)  # 升序
    sortArray = sortArray[-1::-1]  # 逆转,即降序
    arraySum = sum(sortArray)
    tmpSum = 0
    num = 0
    for i in sortArray:
        tmpSum += i
        num += 1
        if tmpSum >= arraySum * percentage:
            return num


# 得到最大的k个特征值和特征向量
def EigDV(covMat, p):
    D, V = np.linalg.eig(covMat)  # 得到特征值和特征向量
    k = Percentage2n(D, p)  # 确定k值
    print("保留99%信息,降维后的特征个数:" + str(k) + "\n")
    eigenvalue = np.argsort(D)
    K_eigenValue = eigenvalue[-1:-(k + 1):-1]
    K_eigenVector = V[:, K_eigenValue]
    return K_eigenValue, K_eigenVector


# 得到降维后的数据
def getlowDataMat(DataMat, K_eigenVector):
    return DataMat * K_eigenVector


# 重构数据
def Reconstruction(lowDataMat, K_eigenVector, meanVal):
    reconDataMat = lowDataMat * K_eigenVector.T + meanVal
    return reconDataMat


# PCA算法
def PCA(data, p):
    dataMat = np.float32(np.mat(data))
    # 数据中心化
    dataMat, meanVal = Z_centered(dataMat)
    # 计算协方差矩阵
    # covMat = Cov(dataMat)
    covMat = np.cov(dataMat, rowvar=0)
    # 得到最大的k个特征值和特征向量
    D, V = EigDV(covMat, p)
    # 得到降维后的数据
    lowDataMat = getlowDataMat(dataMat, V)
    # 重构数据
    reconDataMat = Reconstruction(lowDataMat, V, meanVal)
    return reconDataMat


def main():
    imagePath = 'photo4.png'
    image = cv.imread(imagePath)
    image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    rows, cols = image.shape
    print("降维前的特征个数:" + str(cols) + "\n")
    print(image)
    print('----------------------------------------')
    reconImage = PCA(image, 0.6) # 通过改变保留信息的程度来看这个图片的特征值 
    reconImage = reconImage.astype(np.uint8)
    print(reconImage)
    cv.imshow('test', reconImage)
    cv.waitKey(0)
    cv.destroyAllWindows()


if __name__ == '__main__':
    main()

运行结果:

保留信息的程度运行结果
降维前的原图特征个数为:374在这里插入图片描述
保留90%信息,降维后的特征个数:3在这里插入图片描述
保留99%信息,降维后的特征个数:35在这里插入图片描述
保留99.9%信息,降维后的特征个数:109在这里插入图片描述

我们可以看到:
需要保留的信息程度越高,那么需要的特征值也就越多,图像就越清晰
优缺点:

  1. 能够很好的处理稀疏噪声问题,但是他是一种无监督方法,无法利用标签信息来增加识别率。
  2. 当高维数据呈现非线性结构时,PCA则不能有效地发现数据的本质特征。
  3. PCA对原始数据的分布要求满足高斯分布,对于不服从高斯分布的数据,PCA不能得到理想的结果。
  4. PCA中需要保持主分量的个数难以确定。虽然在某些情况下可以通过协方差矩阵相邻特征值间的比值来选择主成分分量,但当特征值的变换比较平缓时,则很难对主成分进行选取。
    2、我们再来看SVD
    SVD全称叫做singular value ecomposition,中文也叫做奇异值分解,我们在线性代数的学习中经常遇到。简而言之就是将矩阵分解为奇异向量以及奇异值。
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib as mpl
from pprint import pprint


def restore1(sigma, u, v, K):  # 奇异值、左特征向量、右特征向量
    m = len(u)
    n = len(v[0])
    a = np.zeros((m, n))
    for k in range(K):
        uk = u[:, k].reshape(m, 1)
        vk = v[k].reshape(1, n)
        a += sigma[k] * np.dot(uk, vk)
    a[a < 0] = 0
    a[a > 255] = 255
    return np.rint(a).astype('uint8')


def restore2(sigma, u, v, K):  # 奇异值、左特征向量、右特征向量
    m = len(u)
    n = len(v[0])
    a = np.zeros((m, n))
    for k in range(K+1):
        for i in range(m):
            a[i] += sigma[k] * u[i][k] * v[k]
    a[a < 0] = 0
    a[a > 255] = 255
    return np.rint(a).astype('uint8')


if __name__ == "__main__":
    A = Image.open("photo4.png", 'r')
    print(A)
    output_path = r'.\SVD_Output'
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    a = np.array(A)
    print(a.shape)
    K = 50
    u_r, sigma_r, v_r = np.linalg.svd(a[:, :, 0])
    u_g, sigma_g, v_g = np.linalg.svd(a[:, :, 1])
    u_b, sigma_b, v_b = np.linalg.svd(a[:, :, 2])
    plt.figure(figsize=(11, 9), facecolor='w')
    mpl.rcParams['font.sans-serif'] = ['simHei']
    mpl.rcParams['axes.unicode_minus'] = False
    for k in range(1, K+1):
        print(k)
        R = restore1(sigma_r, u_r, v_r, k)
        G = restore1(sigma_g, u_g, v_g, k)
        B = restore1(sigma_b, u_b, v_b, k)
        I = np.stack((R, G, B), axis=2)
        Image.fromarray(I).save('%s\\svd_%d.png' % (output_path, k))
        if k <= 12:
            plt.subplot(3, 4, k)
            plt.imshow(I)
            plt.axis('off')
            plt.title('奇异值个数:%d' % k)
    plt.suptitle('SVD与图像分解', fontsize=20)
    plt.tight_layout(0.3, rect=(0, 0, 1, 0.92))
    plt.show()

运行结果:
在这里插入图片描述
在这里插入图片描述

我们可以看到:
使用SVD算法对图片进行降维,随着奇异值个数的增加,很显然图片会越来越清晰。
优缺点:

  1. 可以用于提取主分量
  2. 当图片为人脸时SVD得到的基容易受到面部表情等的影响
  3. 每个基含有不同的鉴别信息和重构信息。
  • 8
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是DPC-KNN-PCA算法Python完整代码,包括数据预处理、DPC-KNN-PCA算法实现和结果可视化: ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt # 数据预处理 data = pd.read_csv('data.csv') X = data.values[:, :-1] y = data.values[:, -1] # DPC-KNN-PCA算法实现 def DPC_KNN_PCA(X, k, alpha, beta, gamma): n, m = X.shape D = np.zeros((n, n)) for i in range(n): for j in range(n): D[i, j] = np.linalg.norm(X[i] - X[j]) D_sort = np.sort(D, axis=1) idx_sort = np.argsort(D, axis=1) K = np.zeros((n, k)) for i in range(n): for j in range(k): K[i, j] = idx_sort[i, j+1] W = np.zeros((n, n)) for i in range(n): for j in range(k): W[int(K[i, j]), i] = 1 W = np.maximum(W, W.T) D_bar = np.diag(np.sum(W, axis=1)) L = D_bar - W M = np.dot(X.T, L).dot(X) [U, S, V] = np.linalg.svd(M) U_pca = U[:, :2] Z = np.dot(X, U_pca) L_pca = np.dot(U_pca.T, M).dot(U_pca) D_pca = np.diag(np.sum(L_pca, axis=1)) L_norm = np.linalg.inv(np.sqrt(D_pca)).dot(L_pca).dot(np.linalg.inv(np.sqrt(D_pca))) W_norm = np.exp(-alpha*L_norm) - np.eye(n) D_norm = np.diag(np.sum(W_norm, axis=1)) L1_norm = D_norm - W_norm L2_norm = np.linalg.inv(np.sqrt(D_norm)).dot(L_norm).dot(np.linalg.inv(np.sqrt(D_norm))) W_dpc = np.exp(-beta*L1_norm - gamma*L2_norm) - np.eye(n) D_dpc = np.diag(np.sum(W_dpc, axis=1)) L_dpc = D_dpc - W_dpc return Z, L_dpc # 运行DPC-KNN-PCA算法并可视化结果 Z, L_dpc = DPC_KNN_PCA(X, 10, 0.5, 0.1, 0.1) plt.scatter(Z[:, 0], Z[:, 1], c=y) plt.show() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咸鱼_翻身

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值