不同范围组合数

一.递推法

题目描述

给定n组询问,每组询问给定两个整数a,b,请你输出 C a b C_{a}^{b} Cab mod (10^9+7)的值。
1≤n≤10000,
1≤b≤a≤2000

问题解法

根据公式 C a b C_{a}^{b} Cab = C a − 1 b C_{a - 1}^{b} Ca1b + C a − 1 b C_{a - 1}^{b} Ca1b递推进行预处理,求出所有 C a b C_{a}^{b} Cab 的情况,询问的时间复杂度为O(1)。

时间复杂度

时间取决于a的值,两层for循环的时间复杂度是O(a^2)

参考代码

#include <iostream>
#include <cstring>

using namespace std;
const int N = 2030;
const int MOD = 1e9 + 7;
int f[N][N], n;

void init()
{
    for (int i = 0; i < N; i ++)
    {
        for (int j = 0; j <= i; j ++)
        {
            if (!j) f[i][j] = 1;
            else f[i][j] = (f[i - 1][j - 1] + f[i - 1][j]) % MOD;
        }
    }
}

int main()
{
    init();
    cin >> n;
    while (n --)
    {
        int a, b;
        cin >> a >> b;
        cout << f[a][b] << endl;
    }
}


二.预处理阶乘

题目描述

给定n组询问,每组询问给定两个整数a,b,请你输出 C a b C_{a}^{b} Cab mod (109+7)的值。
1≤n≤10000,
1≤b≤a≤10^5

问题解法

此时如果根据公式 C a b C_{a}^{b} Cab = C a − 1 b C_{a - 1}^{b} Ca1b + C a − 1 b C_{a - 1}^{b} Ca1b来进行递推,显然是会TLE的。观察到
C a b C_{a}^{b} Cab =   a ! \ a!\quad  a! / (   ( a − b ) ! \ (a - b )!\quad  (ab)! *   ( b ) ! \ (b)!\quad  (b)!)

可以预处理求n的阶乘和n的阶乘的逆元(根据费马小定理,若p为质数, b − 1 b^{-1} b1 同余 b p − 2 b^{p-2} bp2 (modp)求出 C a b C_{a}^{b} Cab

时间复杂度

预处理时每次都要求阶乘的逆元时,都要进行进行一次快速幂的运算,循环a次,因此总的时间复杂度为O(a * log ⁡ \log logMOD)。

参考代码

#include <iostream>
#include <cstring>

using namespace std;
int n;
const int N = 1e5 + 10;
int fact[N]; //n的阶乘
int infact[N]; //n的阶乘的逆元
int MOD = 1e9 + 7;
typedef long long LL;

int qumi(int p, int k, int m) //快速幂
{
    int res = 1;
    while (k)
    {
        if (k & 1)  res = (LL)res * p % m;
        p = (LL)p * p % m;
        k >>= 1;
    }
    return res;
}

int main()
{
    fact[0] = infact[0] = 1; 
    cin >> n;
    for (int i = 1; i < N; i ++)
    {
        fact[i] = (LL)fact[i - 1] * i % MOD;
        infact[i] = (LL)infact[i - 1] * qumi(i, MOD - 2, MOD) % MOD;  // (a * b)^-1 和 (a ^ -1) * (b ^ -1) 同余 
    }
    
    while (n --)
    {
        int a, b;
        cin >> a >> b;
        cout << (LL)fact[a] * infact[b] % MOD * infact[a - b] % MOD <<endl;
    }
}


三.利用Lucas定理

题目描述

给定n组询问,每组询问给定三个整数a,b,p,其中p是质数,请你输出 C a b C_{a}^{b} Cab mod p的值。
1≤n≤20,
1≤b≤a≤10^18,
1≤p≤10^5,

问题解法

此时a很大,不能再用上述方法,需要用到卢卡斯定理
百科上定义

C a b C_{a}^{b} Cab 同余于 C a / p b / p C_{a / p}^{b / p} Ca/pb/p * C a ( m o d   p ) b ( m o d   p ) C_{a (mod\ p)}^{b(mod\ p)} Ca(mod p)b(mod p) (mod p)
卢卡斯定理证明略

问题然后递归求解即可

参考代码

#include <iostream>
#include <cstring>

using namespace std;
typedef long long LL;

LL a, b;
int p, n;
int quim(int a, int k, int p)
{
    int res = 1;
    while (k)
    {
        if (k & 1)  res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

int C(int a, int b, int p)
{
    int res = 1;
    for (int i = 1, j = a; i <= b; i ++, j --)
        res = (LL) res * j % p * quim(i, p - 2, p) % p;
    return res;
}

int lucas(LL a, LL b, int p)
{
    if (a < p && b < p) return C(a, b, p);  //这步也通过别的方法求
    
    return (LL)lucas(a / p, b / p, p) * C(a % p, b % p, p) % p; 
}

int main()
{
    cin >> n;
    while (n --)
    {
        cin >> a >> b >> p;
        cout << lucas(a, b, p) << endl;
    }
}


四.利用质因数的分解

题目描述

输入a,b,求 C a b C_{a}^{b} Cab的值。

注意结果可能很大,需要使用高精度计算。
1≤b≤a≤5000

问题解法

C a b C_{a}^{b} Cab =   a ! \ a!\quad  a! / (   ( a − b ) ! \ (a - b )!\quad  (ab)! *   ( b ) ! \ (b)!\quad  (b)!)
可将阶乘分解为质因数的乘积,对于某质因数x,分子的x个数减去分母的x个数便是这个式子的x的个数。最后高精度乘法即可。

参考代码

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;


const int N = 5010;

int primes[N], cnt;
int sum[N];
bool st[N];


void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}


int get(int n, int p)    //求出n的阶乘中质数p的次数
{                        //即一次求出n/p, n/(p^2), n/(p^3).......
    int res = 0;         //然后将他们相加
    while (n)            //例如,对于某数p^k,他是p, p^2.....p^k的倍数,因此被统计k次
    {                    
        res += n / p;
        n /= p;
    }
    return res;
}


vector<int> mul(vector<int> a, int b)    //高精度乘法
{
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i ++ )
    {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }
    while (t)
    {
        c.push_back(t % 10);
        t /= 10;
    }
    return c;
}


int main()
{
    int a, b;
    cin >> a >> b;

    get_primes(a);

    for (int i = 0; i < cnt; i ++ )
    {
        int p = primes[i];
        sum[i] = get(a, p) - get(a - b, p) - get(b, p); //得到C(a, b)的唯一分解
    }

    vector<int> res;
    res.push_back(1);

    for (int i = 0; i < cnt; i ++ )
        for (int j = 0; j < sum[i]; j ++ )
            res = mul(res, primes[i]);    //高精度乘法

    for (int i = res.size() - 1; i >= 0; i -- ) printf("%d", res[i]);
    puts("");

    return 0;
}


– 思路源自yxc大佬

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值