组合数

本文详细解析了组合数原理,包括组合数公式、递推公式,以及针对不同数据范围的高效求解策略。重点介绍了卡特兰数的推导、应用实例,如数学选择题、二叉树数量、矩阵链乘等问题。还涉及了计算技巧,如逆元和卢卡斯定理在大范围组合数计算中的应用。
摘要由CSDN通过智能技术生成

组合数

1. 组合数原理

组合数

  • 这里的组合数指的是排列组合中的组合数。
  • 组合中的问题是:给定a个苹果,从中选择出b个苹果,请问有多少种选法?结果就是组合数 C a b C_a ^ b Cab
  • 关于 C a b C_a ^ b Cab 的求解公式如下:

C a b = a ! b ! × ( a − b ) ! = a × ( a − 1 ) × . . . × ( a − b + 1 ) 1 × 2 × . . . × b C_a^b = \frac{a!}{b! \times (a-b)!} = \frac{a \times (a-1) \times ... \times (a-b+1)}{1 \times 2 \times ... \times b} Cab=b!×(ab)!a!=1×2×...×ba×(a1)×...×(ab+1)

  • 另外一个关于 C a b C_a^b Cab 的递推公式:

C a b = C a − 1 b − 1 + C a − 1 b C_a^b = C_{a-1}^{b-1} + C_{a-1}^{b} Cab=Ca1b1+Ca1b

从实际含义考虑这个式子即可:从a个苹果中选择出b个苹果 = (首先拿出一个苹果)从a-1个苹果中选择出b-1个苹果(包含最开始拿出的一个苹果) + 从a-1个苹果中选择出b个苹果(不包含最开始拿出的一个苹果)

  • 下面的四个组合数的题目主要是数据范围不一样,如下:
/**
 * 求n组数据的组合数C(a, b)
 * AcWing 885. 求组合数 I
 * 		1 <= n <= 10000, 1 <= b <= a <= 2000, p = 10^9+7
 * AcWing 886. 求组合数 II
 * 		1 <= n <= 10000, 1 <= b <= a <= 10^5, p = 10^9+7
 * AcWing 887. 求组合数 III
 * 		1 <= n <= 20, 1 <= b <= a <= 10^18, 1 <= p <= 10^5且p是质数
 * 
 * AcWing 888. 求组合数 IV
 *   	求出具体的组合数的值  1 <= b <= a <= 5000
 */
  • 关于不同数据范围组合数的求解具体方法请参考下面的题目分析。

卡特兰数

  • 卡特兰数:首先这个一个数,很多问题的结果都是卡塔兰数,比如2016年全国三卷数学选择题压轴题让求解的就是卡特兰数,问题如下(AcWing 889. 满足条件的01序列也是这个题):

在这里插入图片描述

  • 首先是结论:卡特兰数为:

C 2 n n n + 1 \frac{C_{2n} ^ n}{n+1} n+1C2nn

  • 因此,对于上面的题目,结果就是

C 2 m m m + 1 = C 8 4 4 + 1 = 70 5 = 14 \frac{C_{2m} ^ m}{m+1} = \frac{C_8 ^ 4}{4+1} = \frac{70}{5} = 14 m+1C2mm=4+1C84=570=14

因此选择C。

  • 下面看一下卡特兰数的公式是如何推导出来的。首先我们需要将上述问题转换成一个等价的问题:在一个二维平面内,从(0, 0)出发到达(n, n),每次可以向上或者向右走一格,0代表向右走一个,1代表向上走一格,则每条路径都会代表一个01序列,则满足任意前缀中0的个数不少于1个数序列对应的路径则右下侧,如下图:

在这里插入图片描述

符合要求的路径必须严格在上图中红色线的下面(不可以碰到图中的红线,可以碰到绿线)。则我们考虑任意一条不合法路径,例如下图:

在这里插入图片描述

所有路径的条数为 C 2 n n C_{2n}^{n} C2nn,其中不合法的路径有 C 2 n n − 1 C_{2n}^{n-1} C2nn1 条,因此合法路径有:
C 2 n n − C 2 n n − 1 = ( 2 n ) ! n ! × n ! − ( 2 n ) ! ( n + 1 ) ! × ( n − 1 ) ! = ( 2 n ) ! × ( n + 1 ) n ! × ( n + 1 ) ! − ( 2 n ) ! × n n ! × ( n + 1 ) ! = ( 2 n ) ! × ( n + 1 ) − ( 2 n ) ! × n n ! × ( n + 1 ) ! = ( 2 n ) ! n ! × ( n + 1 ) ! = 1 n + 1 × ( 2 n ) ! n ! × n ! = C 2 n n n + 1 C_{2n}^{n} - C_{2n}^{n-1} = \frac{(2n)!}{n! \times n!} - \frac{(2n)!}{(n+1)! \times (n-1)!} \\ = \frac{(2n)! \times (n+1)}{n! \times (n+1)!} - \frac{(2n)! \times n}{n! \times(n+1)!} \\ = \frac{(2n)! \times (n+1) - (2n)! \times n}{n! \times (n+1)!} \\ = \frac{(2n)!}{n! \times (n+1)!} = \frac{1}{n+1} \times \frac{(2n)!}{n! \times n!} \\ = \frac{C_{2n} ^ n}{n+1} C2nnC2nn1=n!×n!(2n)!(n+1)!×(n1)!(2n)!=n!×(n+1)!(2n)!×(n+1)n!×(n+1)!(2n)!×n=n!×(n+1)!(2n)!×(n+1)(2n)!×n=n!×(n+1)!(2n)!=n+11×n!×n!(2n)!=n+1C2nn
推导完毕。

  • 除了上述两种问题,如下问题对应的答案也是卡特兰数:

    (1)n个结点的二叉树数量h(n) ;其实有递推公式,即:
    h ( n ) = ∑ i = 1 n h ( i − 1 ) × h ( n − i ) h ( 0 ) = 1 h(n) = \sum _{i=1}^{n} h(i-1) \times h(n-i) \quad \quad h(0)=1 h(n)=i=1nh(i1)×h(ni)h(0)=1
    (2)矩阵链乘: P = A 1 × A 2 × . . . × A n P=A_1 \times A_2 \times ... \times A_n P=A1×A2×...×An,有多少种不同的计算次序?(相当于加括号,问合法括号序列有多少个)

    (3)一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

    (4)有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

  • 补充内容:

在这里插入图片描述

2. AcWing上的组合数题目

AcWing 885. 求组合数 I

问题描述

分析

  • 这一题可以使用组合数的递推公式求解,因为 1 ≤ b ≤ a ≤ 2000 1 \le b \le a \le 2000 1ba2000,计算量最大为 200 0 2 = 4 × 1 0 6 2000^2=4 \times 10 ^ 6 20002=4×106,大约四百万的复杂度,完全可以接受。

  • 递推公式: C a b = C a − 1 b − 1 + C a − 1 b C_a^b = C_{a-1}^{b-1} + C_{a-1}^{b} Cab=Ca1b1+Ca1b

代码

  • C++
#include <iostream>

using namespace std;

const int N = 2010, mod = 1e9 + 7;

int c[N][N];

void init() {
    
    for (int i = 0; i < N; i++)
        for (int j = 0; j <= i; j++)
            if (!j) c[i][j] = 1;
            else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}

int main() {
    
    init();  // 递推求组合数
    
    int n;
    scanf("%d", &n);
    while (n--) {
        int a, b;
        scanf("%d%d", &a, &b);
        printf("%d\n", c[a][b]);
    }
    
    return 0;
}

AcWing 886. 求组合数 II

问题描述

分析

  • 这一题如果仍然使用递推的方式求解的话,因为 1 ≤ b ≤ a ≤ 1 0 5 1 \le b \le a \le 10^5 1ba105,计算量最大为 1 0 10 10 ^ {10} 1010,大约十亿的复杂度,完全不能被接受。

  • 这一题需要使用到的公式是:

C a b = a ! b ! × ( a − b ) ! C_a^b = \frac{a!}{b! \times (a-b)!} Cab=b!×(ab)!a!

  • 存在的问题是阶乘太大,计算机无法存储下来,另外我们最终的结果需要对 1 0 9 + 7 10^9+7 109+7取模,因此考虑值存取取模后的结果,但是遗憾的是:

a b   ( m o d   p ) ≠ a   ( m o d   p ) b   ( m o d   p ) \frac{a}{b} \ (mod \ p) \neq \frac{a \ (mod \ p)}{b \ (mod \ p)} ba (mod p)=b (mod p)a (mod p)

  • 那该怎么办呢?这里就要使用到了逆元,关于逆元可以参考:网址

  • a b ≡ a × x   ( m o d   m ) \frac{a}{b} \equiv a \times x \ (mod \ m) baa×x (mod m),我们求出分母的逆元即可,因为p是质数,所以任何小于p的数都与p互质,因此逆元存在,另外由于p是质数,可以使用快速幂求解逆元。

  • 另外根据逆元定义很容易验证b、c的逆元相乘的结果等于 b × c b \times c b×c的逆元。

  • 实际代码中我们可以使用数组fact记录各个数据阶乘的结果,数组infact记录阶乘对应的逆元,最终

C a b = ( ( f a c t [ a ] × i n f a c t [ b ] ) % p ) × i n f a c t [ a − b ] ) % p C_a^b = ((fact[a] \times infact[b]) \% p) \times infact[a-b]) \% p Cab=((fact[a]×infact[b])%p)×infact[ab])%p

  • 计算量:预处理各个数的阶乘以及阶乘的逆元,求逆元可以使用快速幂,因此时间复杂度为 O ( n × l o g ( n ) ) O(n\times log(n)) O(n×log(n)),计算量为 1 0 5 × l o g ( 1 0 5 ) ≈ 1.6 × 1 0 6 10^5 \times log(10^5) \approx 1.6 \times 10 ^ 6 105×log(105)1.6×106。可以接受。

代码

  • C++
#include <iostream>

using namespace std;

typedef long long LL;

const int N = 100010, mod = 1e9 + 7;

int fact[N];  // fact[i]存储 (i!)%mod 的结果
int infact[N];  // infact[i]存储 (i!模mod的逆元)%mod 的结果

int qmi(int a, int b, int p) {
    
    int res = 1 % p;
    while (b) {
        if (b & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        b >>= 1;
    }
    return res;
}

int main() {
    
    fact[0] = infact[0] = 1;  // 0!=1, 1的逆元是1
    for (int i = 1; i < N; i++) {
        fact[i] = (LL)fact[i - 1] * i % mod;
        infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
    }
    
    int n;
    scanf("%d", &n);
    while (n--) {
        int a, b;
        scanf("%d%d", &a, &b);
        printf("%d\n", (LL)fact[a] * infact[b] % mod * infact[a - b] % mod);
    }
    
    return 0;
}

AcWing 887. 求组合数 III

问题描述

分析

  • 上两题中的方法这里都不能使用,因为b、a范围太大了。本题需要使用到卢卡斯定理(lucas)

  • 卢卡斯定理(要求式中a、b为非负整数,p为质数):

C a b = C a   ( m o d   p ) b   ( m o d   p ) × C a / p b / p    ( m o d   p ) C_a^b = C_{a \ (mod \ p)} ^ {b \ (mod \ p)} \times C_{a / p} ^ {b / p} \ \ (mod \ p) Cab=Ca (mod p)b (mod p)×Ca/pb/p  (mod p)

递归求解即可。

  • 关于 C a   ( m o d   p ) b   ( m o d   p ) C_{a \ (mod \ p)} ^ {b \ (mod \ p)} Ca (mod p)b (mod p)的求解,直接使用定义求解即可:

C a b = a × ( a − 1 ) × . . . × ( a − b + 1 ) 1 × 2 × . . . × b C_a^b = \frac{a \times (a-1) \times ... \times (a-b+1)}{1 \times 2 \times ... \times b} Cab=1×2×...×ba×(a1)×...×(ab+1)

  • N = 1 0 18 N=10^{18} N=1018,求解 C a   ( m o d   p ) b   ( m o d   p ) C_{a \ (mod \ p)} ^ {b \ (mod \ p)} Ca (mod p)b (mod p)的复杂度为 O ( p × l o g ( p ) ) O(p \times log(p)) O(p×log(p))的(因为要求解 2 p − 2   % p 2^{p-2}\ \%p 2p2 %p 的值,然后预处理所有的阶乘以及逆元的阶乘),后面的 C a / p b / p C_{a / p} ^ {b / p} Ca/pb/p 可以递归求解,可以看成p进制的数据,因此需要递归 l o g p ( N ) log_p(N) logp(N)次,因此总时间复杂度为: l o g p ( N ) × p × l o g ( p ) log_p(N) \times p \times log(p) logp(N)×p×log(p)。一般来说p值比较大,因此 l o g p ( N ) log_p(N) logp(N)比较小,可以忽略,时间复杂度是 O ( p × l o g ( p ) ) O(p \times log(p)) O(p×log(p))的,和上一题的时间复杂度差不多。

  • 关于卢卡斯定理的证明,不要求掌握。

代码

  • C++
#include <iostream>

using namespace std;

typedef long long LL;

int p;

// 计算 a^b % p
int qmi(int a, int b) {
    
    int res = 1 % p;
    while (b) {
        if (b & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        b >>= 1;
    }
    return res;
}

// 根据定义计算C(a, b) % p
int C(int a, int b) {
    
    if (b > a) return 0;  // 不合法情况,直接返回0
    
    int res = 1;
    for (int i = 1, j = a; i <= b; i++, j--) {
        res = (LL)res * j % p;
        res = (LL)res * qmi(i, p - 2) % p;
    }
    return res;
}

int lucas(LL a, LL b) {
    
    if (a < p && b < p) return C(a, b);
    return (LL)C(a % p, b % p) * lucas(a / p, b / p) % p;
}

int main() {
    
    int n;
    cin >> n;
    while (n--) {
        LL a, b;
        cin >> a >> b >> p;
        cout << lucas(a, b) << endl;
    }
    
    return 0;
}

AcWing 888. 求组合数 IV

问题描述

分析

  • 这一题根据定义计算即可:

C a b = a ! b ! × ( a − b ) ! C_a^b = \frac{a!}{b! \times (a-b)!} Cab=b!×(ab)!a!

  • 我们需要实现一个高精度乘法和一个高精度除法。这样的写法运行效率比较低,另外也比较难写。
  • 我们可以考虑对 C a b C_a^b Cab进行质因数分解,假设:

C a b = p 1 α 1 × p 2 α 2 × . . . × p k α k C_a^b = p_1^{\alpha_1} \times p_2^{\alpha_2} \times ... \times p_k^{\alpha_k} Cab=p1α1×p2α2×...×pkαk

这样我们只需要写高精度乘法即可。

  • 如何计算每个质因子出现的次数呢?我们发现 C a b C_a^b Cab是一个阶乘除以另外两个阶乘,因此,我们可以分别求出这三个阶乘的质因数分解,然后将对应质因数的幂次相减即可。此时问题就转换成了如何求解阶乘的质因数分解,对应题目:AcWing 197. 阶乘分解

  • 阶乘的质因数分解: n ! n! n!所有的质因子一定是小于等于n的,否则如果存在大于n的质因子,说明该质因子一定是某几个数相乘得到的,违反质数的定义。

    (1)求出1~n中所有的质数,可以使用线性法筛质数,可以参考:网址

    (2)枚举某个质数p,则其出现的次数为:
    ⌊ n p ⌋ + ⌊ n p 2 ⌋ + . . . . . . \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + ...... pn+p2n+......
    该方法求阶乘 n ! n! n!的质因数分解的时间复杂度大约为 O ( n ) O(n) O(n),因为1~n中大约有 n l o g ( n ) \frac{n}{log(n)} log(n)n个质数,求每个质数出现次数计算大约为 l o g ( n ) log(n) log(n)的,相乘得到阶乘质因数分解时间复杂度大约为 O ( n ) O(n) O(n)的。

  • 本题的解题步骤是:

    (1)使用线性筛法筛出1~a之间的所有质数,时间复杂度 O ( a ) O(a) O(a)

    (2)根据 C a b C_a^b Cab 定义计算其质因数分解结果,时间复杂度 O ( a ) O(a) O(a)

    (3)高精度乘法计算最终结果。

代码

  • C++
#include <iostream>
#include <vector>

using namespace std;

const int N = 5010;

int primes[N], cnt;
bool st[N];  // 该数据是否被筛掉
int sum[N];  // sum[i]代表primes[i]在C(a, b)的质因数分解中出现的次数

void get_primes(int n) {
    
    for (int i = 2; i <= n; i++) {
        if (!st[i]) primes[cnt++] = i;
        for (int j = 0; primes[j] <= n / i; j++) {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

int get(int n, int p) {
    
    int res = 0;
    while (n) res += n / p, n /= p;
    return res;
}

vector<int> mul(vector<int> a, int b) {
    
    vector<int> c;
    int t = 0;  // 进位
    for (int i = 0; i < a.size(); i++) {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }
    while (t) {
        c.push_back(t % 10);
        t /= 10;
    }
    return c;
}

int main() {
    
    int a, b;
    cin >> a >> b;
    
    // (1) 使用线性筛法筛出1~a之间的所有质数
    get_primes(a);
    // (2) 根据 C(a, b) 定义计算其质因数分解结果
    for (int i = 0; i < cnt; i++) {
        int p = primes[i];
        sum[i] = get(a, p) - get(b, p) - get(a - b, p);
    }
    // (3) 高精度乘法计算最终结果
    vector<int> res;
    res.push_back(1);
    for (int i = 0; i < cnt; i++)
        for (int j = 0; j < sum[i]; j++)
            res = mul(res, primes[i]);
    
    // 输出结果
    for (int i = res.size() - 1; i >= 0; i--) printf("%d", res[i]);
    puts("");
    
    return 0;
}

AcWing 889. 满足条件的01序列

问题描述

分析

  • 本题让求卡特兰数,直接带入公式即可:

C 2 n n n + 1 = 1 n + 1 × a × ( a − 1 ) × . . . × ( a − b + 1 ) 1 × 2 × . . . × b a = 2 n ,   b = n \frac{C_{2n} ^ n}{n+1} = \frac{1}{n+1} \times \frac{a \times (a-1) \times ... \times (a-b+1)}{1 \times 2 \times ... \times b} \quad \quad a=2n, \ b=n n+1C2nn=n+11×1×2×...×ba×(a1)×...×(ab+1)a=2n, b=n

  • 因为mod是质数,因此任何数与mod都互质,可以使用快速幂求逆元,否则需要使用扩展欧几里得算法求逆元。

代码

  • C++
#include <iostream>

using namespace std;

typedef long long LL;

const int mod = 1e9 + 7;

int qmi(int a, int k, int p) {
    
    int res = 1 % p;
    while (k) {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

int main() {
    
    int n;
    cin >> n;
    
    int a = 2 * n, b = n;
    int res = 1;
    
    for (int i = a; i > a - b; i--) res = (LL)res * i % mod;
    for (int i = 1; i <= b; i++) res = (LL)res * qmi(i, mod - 2, mod) % mod;
    
    res = (LL)res * qmi(n + 1, mod - 2, mod) % mod;
    
    cout << res << endl;
    
    return 0;
}
  • 17
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值