浅谈SiameseFC的优点与不足

本文介绍了SiameseFC孪生网络在目标跟踪中的应用,包括其实时性、对小范围晃动和运动模糊的适应性。然而,SiameseFC在面对目标形变、光照差异、背景复杂和尺度变化时表现出不足,可能导致跟踪失败。为解决这些问题,提出了在线更新策略、首帧处理和利用空间信息等解决方案。
摘要由CSDN通过智能技术生成

一、SiameseFC基本结构

                 

        孪生结构网络是卷积神经网络中的一种特殊结构。其结构如上图所示,它由两个结构相同的子网络构成,网络的输入是两张像,其中一张称为模板图像,通常选取的是序列第一帧,另外一张称为搜索图像,选取的是后续帧,每一个子网络负责处理一张图像,通过子网络的前向计算,可以提取图像的特征,最后将两者特征通过相似性度量函数,最终计算得到一个17×17×1的热力图,代表着搜索图像中各个位置与模板图像的相似度值。并根据以下函数计算相似度(卷积函数):

                                                         

其中z是模板图像,x是搜索图像, φ代表的是一种特征映射操作,将原始图像映射成特定的空间特征,这里采用的是卷积神经网络里的卷积层和池化层,f是相似性度量函数,这里代表的是卷积函数。模板图像虽然使用的是视频序列的第一帧,但是它是经过裁剪而来的,以待跟踪目标为中心,把原图像裁剪成127×127的尺寸。 也是经过裁剪而来的,它是以网络上一次输出的目标位置的中心点作为裁剪的中心,裁剪成固定的255×255的尺

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值