poj 2478 Farey Sequence(欧拉函数)

Farey Sequence
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 13204 Accepted: 5181

Description

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are 
F2 = {1/2} 
F3 = {1/3, 1/2, 2/3} 
F4 = {1/4, 1/3, 1/2, 2/3, 3/4} 
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5} 

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 10 6). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn. 

Sample Input

2
3
4
5
0

Sample Output

1
3
5
9

Source

POJ Contest,Author:Mathematica@ZSU


简单的欧拉函数模板题。

所谓欧拉函数:对于一个正整数n,小于n且和n 互质的正整数(包括1 )的个数,记做φ(n) 。

通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。

欧拉函数代码实现:   

//直接求解欧拉函数
int euler(int n){ //返回euler(n) 
     int res=n,a=n;
     for(int i=2;i*i<=a;i++){
         if(a%i==0){
             res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出 
             while(a%i==0) a/=i;
         }
     }
     if(a>1) res=res/a*(a-1);
     return res;
}

//筛选法打欧拉函数表 
#define Max 1000001
int euler[Max];
void Init(){ 
     euler[1]=1;
     for(int i=2;i<Max;i++)
       euler[i]=i;
     for(int i=2;i<Max;i++)
        if(euler[i]==i)
           for(int j=i;j<Max;j+=i)
              euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出 
}

本题就是欧拉函数的直接使用:

#include<stdio.h>
#include<string.h>
#include<math.h>
#define LL  __int64
#define Max 1005000
LL sum[1005000];
void init(){
	sum[1]=1;
	for(LL i=2;i<Max;i++)
	sum[i]=i;
	for(LL i=2;i<Max;i++)
	if(sum[i]==i)
	for(LL j=i;j<Max;j+=i)
	sum[j]=sum[j]/i*(i-1);
}
	
int main()
{
	LL n;
    LL i,t;
	init();
	while(scanf("%I64d",&n)!=EOF)
	{
		t=0;
		if(n==0)break;
		for(i=2;i<=n;i++)
		t+=sum[i];
		printf("%I64d\n",t);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值