题目链接:
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3905
题目大意:
有n块蛋糕,Alice和Bob分别可以拿n/2块。对于某一块蛋糕,两个人所认为的价值是不一样的。取蛋糕的规则是:Alice从中选取拿出两块蛋糕,然后让Bob先选,Bob会选他认为价值高的蛋糕。现在问Alice怎么选择才能让他自己得到的蛋糕价值最大。
思路:
可以想到蛋糕价值最大的那块(在Bob看来)Alice一定是拿不到的了。所以我们刚开始一定会往贪心方面去想,让Alice拿价值最低的蛋糕最好能让Bob拿走。
但是这样是有局限性的,因为不同的蛋糕组合可能会产生不同的价值。
所以要考虑dp。我们知道如果当前状态下拿了i块蛋糕,Alice能拿i/2块。所以我们设dp[i][j],表示前i块蛋糕中Alice拿了j块所能获得的最大价值。
那么就是拿或不拿的问题了,所以状态转移方程:dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+a[i]).
但是我们要满足无后效性。即要对b[i]进行从大到小的排序,这样对于第i个蛋糕,Alice就能有两个选择了:拿或不拿。因为一定能保证Bob的蛋糕数大于等于Alice自己了。
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define max(a,b) a>b?a:b
using namespace std;
struct node{
int a,b;
}p[808];
int dp[808][808];
bool cmp(node x,node y)
{
return x.b>y.b;
}
int main()
{
int T,i,j,k,n;
scanf("%d",&T);
while(T--)
{
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d%d",&p[i].a,&p[i].b);
sort(p+1,p+1+n,cmp);
for(i=1;i<=n;i++)
for(j=1;j<=i/2;j++)
dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+p[i].a);
printf("%d\n",dp[n][n/2]);
}
}