题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3905
题意:
A和B一共买了n(为偶数)块蛋糕, A和B的口味不同, 所以对每块蛋糕的喜欢值不同。 现在A和B要进行n/2次操作, A每次取两块蛋糕,B先选取。 问A得到的喜欢值的总和最大是多少。
分析:
如果单纯的从n个数中选取m个数使得到的和最大, 估计大家都会写, 但是现在又增加一个控制条件,所以是问题变得复杂了一些。 我们可以这样想, 如果我们首先满足控制条件,在控制条件上(也就是合法状态上)进行呢?想一想, 那么问题岂不是又变成单纯的n个数中选取m个数使得到的和最大。 想到这就可以轻而易举的解决问题了。
那么像这样一类的问题, 我们是不是都可这样想呢, 就是如果紧紧是增加一个控制条件是简单的问题变复杂, 那么我门就可以首先满足条件, 在合法的条件下进行解答,那么问题又变成简单问题了。(自己YY的,如有不对请路过的大牛指正)。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn = 1e3;
int dp[maxn][maxn];
struct Info
{
int a, b;
bool operator < (const Info& rhs) const
{
return b > rhs.b;
}
}Ca[maxn];
int main()
{
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = 0; i < n; i++)
scanf("%d%d", &Ca[i].a, &Ca[i].b);
sort(Ca, Ca+n);
memset(dp, 0, sizeof(dp));
for(int i = 1; i < n; i++)
{
for(int j = 1; 2*j <= i+1; j++)
{
dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]+Ca[i].a);
}
}
printf("%d\n", dp[n-1][n/2]);
}
return 0;
}