第十一周 项目四 利用遍历思想求解图问题

/*       
* Copyright(c) 2017,烟台大学计算机学院       
* All rights reserved.       
* 文件名称:axiao9.cpp       
* 作    者:李潇      
* 完成日期:2017 年 11 月 9 日       
* 版 本 号:v1.0       
*       
*假设图G采用邻接表存储,分别设计实现以下要求的算法,要求用区别于示例中的图进行多次测试,通过观察输出值,掌握相关问题的处理方法。 
  (1)设计一个算法,判断顶点u到v是否有简单路径 
  (2)设计一个算法输出图G中从顶点u到v的一条简单路径(设计测试图时,保证图G中从顶点u到v至少有一条简单路径)。 
  (3)输出从顶点u到v的所有简单路径。 
  (4)输出图G中从顶点u到v的长度为s的所有简单路径。 
  (5)求图中通过某顶点k的所有简单回路(若存在) 
    (6)求不带权连通图G中从顶点u到顶点v的一条最短路径。 
  (7)求不带权连通图G中,距离顶点v最远的顶点k   
* 输入描述:无需输入       
* 程序输出:实现各种算法的函数的测试结果       
*/ 
         利用图的基本算法库
1、是否有简单路径? 
问题:假设图G采用邻接表存储,设计一个算法,判断顶点u到v是否有简单路径。
  main.cpp
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV];     //定义存放节点的访问标志的全局数组
void ExistPath(ALGraph *G,int u,int v, bool &has)
{
    int w;
    ArcNode *p;
    visited[u]=1;
    if(u==v)
    {
        has=true;
        return;
    }
    p=G->adjlist[u].firstarc;
    while (p!=NULL)
    {
        w=p->adjvex;
        if (visited[w]==0)
            ExistPath(G,w,v,has);
        p=p->nextarc;
    }
}

void HasPath(ALGraph *G,int u,int v)
{
    int i;
    bool flag = false;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    ExistPath(G,u,v,flag);
    printf(" 从 %d 到 %d ", u, v);
    if(flag)
        printf("有简单路径\n");
    else
        printf("无简单路径\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,0,0,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,0},
        {1,0,0,1,0},
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    HasPath(G, 1, 0);
    HasPath(G, 4, 1);
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值