二叉树是递归结构,用递归方法来访问是最自然的。下面摘录课本二叉树中序遍历代码,这是最简单大家最熟悉不过的东西了:
#include <stdio.h>
#define visit(tree) printf("%d ", tree->x)
struct node {
int x;
struct node *left;
struct node *right;
};
void inorder(struct node *tree)
{
if(tree->left) inorder(tree->left);
visit(tree);
if(tree->right) inorder(tree->right);
}
如果把二叉树最右侧的一条链看作链表,而每个元素的左指针看作和自己同构的子结构,则可以得到另一种遍历写法,
void inorder(struct node *tree)
{
while (tree) {
if (tree->left) inorder(tree->left);
visit(tree);
tree = tree->right;
}
}
功能相同。但是第二个递归没有了!它变成了一个简单的循环。
同理,汉诺塔的尾递归也可以做这样的优化,要点是,想象尾递归的每一次调用都是二叉树最右侧链表的依次遍历,而在调用过程中,参数向量必有一个分量包含循环结束条件,因而链表是有终点的。
void hanoi(int n,int a,int b, int c)
{
if (n==1) printf("move %d -> %d\n", a, c);
else {
hanoi(n-1, a, c, b);
printf("move %d -> %d\n", a, c);
hanoi(n-1, b, a, c);
}
}
void hanoi2(int n,int a,int b, int c)
{
int x;
while (n>1){
hanoi2(--n, a, c, b);
printf("move %d -> %d\n", a, c);
x=a; a=b; b=x;
}
printf("move %d -> %d\n", a, c);
}
最后,是快速排序的一个例子:
void quickSort2(int arr[], int low, int high)
{
while (low < high)
{
int pi = partition(arr, low, high);
quickSort2(arr, low, pi - 1);
low = pi+1;
}
}