动态规划,转化成图来做,即转化成有向图上的最长路问题。
假设建图已好,存在邻接矩阵G中。d[ i ]表示从结点 i 出发的最长路长度,则
d[i]=max { d[ j ] +1| ( i , j )属于E}
E为边集合。
记忆化搜索程序(调用前d数组初始化为0)
int dp(int i) { int j; if(d[i]>0) return d[i]; d[i]=1; for(j=1;j<=n;j++) if(G[i][j]) { if(d[i]<dp(j)+1) d[i]=dp(j)+1; } return d[i];
在主程序中,调用:}
则最长路长度是d数组中最大的。for(i=1;i<=n;i++) dp(i);
通常会是稀疏图,采用邻接表建有向图:
int n,m; int first[max]; int u[max],v[max],w[max],next[max]; void read_graph() { scanf("%d%d",&n,&m);//节点数,边数 for(int i=0;i<n;i++) first[i]=-1; for(int e=0;e<m;e++)//输入边 { scanf("%d%d%d",&u[e],&v[e],&w[e]); next[e]=first[u[e]]; first[u[e]]=e; } }
这样建表后,若想判断结点 x和 y之间是否存在边,则可以:这些问题解决后就差不多了int yes(int x,int y) { int i,p; p=first[x]; while(p!=-1) { if(v[p]==y) return 1; p=next[p]; } return 0; }
#include<stdio.h> #include<stdlib.h> #define N 20000 #define max 20002 int map[105][105],d[max]; int u[max],v[max],first[max],next[40005]; int ti[4]={-1,0,1,0},tj[4]={0,1,0,-1}; int h1,h2,m,n; int yes(int x,int y) { int i,p; p=first[x]; while(p!=-1) { if(v[p]==y) return 1; p=next[p]; } return 0; } int dp(int i) { int j; if(d[i]>0) return d[i]; d[i]=1; for(j=1;j<=n*m;j++) if(yes(i,j)) { if(d[i]<dp(j)+1) d[i]=dp(j)+1; } return d[i]; } int main() { int i,j,k,e=0; scanf("%d%d",&n,&m); for(i=1;i<=n;i++) for(j=1;j<=m;j++) scanf("%d",&map[i][j]); for(i=0;i<=m+1;i++) map[0][i]=map[n+1][0]=N; for(i=0;i<=n+1;i++) map[i][0]=map[i][m+1]=N; memset(d,0,sizeof(d)); memset(first,-1,sizeof(first)); for(i=1;i<=n;i++) for(j=1;j<=m;j++) { h1=(i-1)*m+j; for(k=0;k<4;k++) if(map[i][j]>map[i+ti[k]][j+tj[k]]) { h2=(i+ti[k]-1)*m+j+tj[k]; u[e]=h1; v[e]=h2; next[e]=first[u[e]]; first[u[e]]=e; e++; } } for(i=1;i<=n*m;i++) dp(i); k=d[1]; for(i=2;i<=n*m;i++) if(k<d[i]) k=d[i]; printf("%d",k); system("pause"); return 0; }