百练1088 滑雪 dp

   动态规划,转化成图来做,即转化成有向图上的最长路问题。

   假设建图已好,存在邻接矩阵G中。d[ i ]表示从结点 i 出发的最长路长度,则

      d[i]=max { d[ j ] +1| ( i , j )属于E}

     E为边集合。 

    记忆化搜索程序(调用前d数组初始化为0)

    

int dp(int i)
{
  int j;  
  if(d[i]>0)  return d[i];
  d[i]=1;
  for(j=1;j<=n;j++)
    if(G[i][j])
    {
      if(d[i]<dp(j)+1) d[i]=dp(j)+1;
    }
  return d[i];
}


 在主程序中,调用:
for(i=1;i<=n;i++)
    dp(i);
则最长路长度是d数组中最大的。

通常会是稀疏图,采用邻接表建有向图:

int n,m;
int first[max];
int u[max],v[max],w[max],next[max];
void read_graph()
{
   scanf("%d%d",&n,&m);//节点数,边数 
   for(int i=0;i<n;i++)
     first[i]=-1;
   for(int e=0;e<m;e++)//输入边 
   {
     scanf("%d%d%d",&u[e],&v[e],&w[e]);
     next[e]=first[u[e]];
     first[u[e]]=e;
   }
}   

这样建表后,若想判断结点 x和 y之间是否存在边,则可以:
int yes(int x,int y)
{
  int i,p;
  p=first[x];
  while(p!=-1)
  {
    if(v[p]==y) return 1;
    p=next[p];
  }
  return 0;
} 
这些问题解决后就差不多了

#include<stdio.h>
#include<stdlib.h>
#define N 20000
#define max 20002
int map[105][105],d[max];
int u[max],v[max],first[max],next[40005];
int ti[4]={-1,0,1,0},tj[4]={0,1,0,-1};
int h1,h2,m,n;
int yes(int x,int y)
{
  int i,p;
  p=first[x];
  while(p!=-1)
  {
    if(v[p]==y) return 1;
    p=next[p];
  }
  return 0;
} 
int dp(int i)
{
  int j;  
  if(d[i]>0)  return d[i];
  d[i]=1;
  for(j=1;j<=n*m;j++)
    if(yes(i,j))
    {
      if(d[i]<dp(j)+1) d[i]=dp(j)+1;
    }
  return d[i];
}  
int main()
{
  int i,j,k,e=0;
  scanf("%d%d",&n,&m);
  for(i=1;i<=n;i++)
     for(j=1;j<=m;j++)
       scanf("%d",&map[i][j]);
  for(i=0;i<=m+1;i++)
    map[0][i]=map[n+1][0]=N;
  for(i=0;i<=n+1;i++)
    map[i][0]=map[i][m+1]=N;
  
  memset(d,0,sizeof(d));  
  memset(first,-1,sizeof(first));
  
  for(i=1;i<=n;i++)
    for(j=1;j<=m;j++)
    { 
      h1=(i-1)*m+j;      
      for(k=0;k<4;k++)
        if(map[i][j]>map[i+ti[k]][j+tj[k]])
        {
          h2=(i+ti[k]-1)*m+j+tj[k];  
          u[e]=h1;
          v[e]=h2;
          next[e]=first[u[e]];
          first[u[e]]=e;
          e++;
        }
    }
    
  for(i=1;i<=n*m;i++)
    dp(i);
  k=d[1];
  for(i=2;i<=n*m;i++)
    if(k<d[i]) k=d[i];
  printf("%d",k); 
  system("pause"); 
  return 0;
}    



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值