题目描述:
有一个由按钮组成的矩阵,其中每行有6个按钮,共5行。每个按钮的位置上有一盏灯。当按下一个按钮后,该按钮以及周围位置(上边、下边、左边、右边)的灯都会改变一次。即,如果灯原来是点亮的,就会被熄灭;如果灯原来是熄灭的,则会被点亮。在矩阵角上的按钮改变3盏灯的状态;在矩阵边上的按钮改变4盏灯的状态;其他的按钮改变5盏灯的状态。
所以在5x6的矩阵中,左边矩阵中用X标记的按钮表示被按下,右边的矩阵表示灯状态的改变。对矩阵中的每盏灯设置一个初始状态。请你按按钮,直至每一盏等都熄灭。与一盏灯毗邻的多个按钮被按下时,一个操作会抵消另一次操作的结果。在下图中,第2行第3、5列的按钮都被按下,因此第2行、第4列的灯的状态就不改变。
请你写一个程序,确定需要按下哪些按钮,恰好使得所有的灯都熄灭。根据上面的规则,我们知道
1)第2次按下同一个按钮时,将抵消第1次按下时所产生的结果。因此,每个按钮最多只需要按下一次;
2)各个按钮被按下的顺序对最终的结果没有影响;
3)对第1行中每盏点亮的灯,按下第2行对应的按钮,就可以熄灭第1行的全部灯。如此重复下去,可以熄灭第1、2、3、4行的全部灯。同样,按下第1、2、3、4、5列的按钮,可以熄灭前5列的灯。
解题思路:
为了方便,给每个灯的位置定一个坐标,得到一个5x6的数组,但是为了避免第一行,第一列最后一列需要额外的操作,我们讲数组设定为6x8的二维数组。
puzzle[i][j]表示第i行第j列上灯的初试状态,1为亮,0为灭;
press[i][j]表示要不要按下ij位置的灯,1为按下;
如果这样的话有2的30次方种情况,太复杂,对算法进行优化,我们发现了规律
如果位置(1,j)的灯亮,则press[2][j]的值必为1;反之亦然,所有通过操作,将第一行的灯全部熄灭,而3,4,5行不受影响,继续后面的操作。
代码:
#include <stdio.h>
int puzzle[6][8], press[6][8];
/*
推测验证过程:
根据第一行猜测
*/
bool guess() {
int c, r;
//根据press第1行和puzzle数组,计算press其他行的值
for(r=1; r<5; r++) {
for(c=1; c<7; c++) {
press[r+1][c]=(puzzle[r][c]+press[r][c]+press[r-1][c]+press[r][c-1]+press[r][c+1])%2;
}
}
//判断所计算的press数组能否熄灭第5行的所有灯
for(c=1; c<7; c++) {
if ((press[5][c-1]+press[5][c]+press[5][c+1]+press[4][c])%2 != puzzle[5][c]) {
return false;
}
}
return true;
}
/*
枚举过程:
对press第1行的元素press[1][1]~press[1][6]的各种取值进行枚举
*/
void enumerate() {
int c;
bool success; //这个变量时当时定义了没排上用场吧,NodYoung注
for(c=1; c<7; c++) {
press[1][c]=0;
}
while(guess()==false) {
press[1][1]++;
c=1;
while(press[1][c]>1) { //累加进位
press[1][c]=0;
c++;
press[1][c]++;
}
}
return ;
}
int main() {
int cases, i, r, c;
scanf("%d", &cases);
for(r=0; r<6; r++) {
press[r][0]=press[r][7]=0;
}
for(c=0; c<7; c++) {
press[0][c]=0;
}
for(i=0; i<cases; i++) {
for(r=1; r<6; r++) {
for(c=1; c<7; c++) {
scanf("%d", &puzzle[r][c]); //读入输入数据
}
}
enumerate();
printf("PUZZLE#%d\n", i+1);
for (r=1; r<6; r++) {
for (c=1; c<7; c++) {
printf("%d ", press[r][c]);
}
printf("\n");
}
}
return 0;
}