【算法与数据结构】之并查集

并查集 Union Find

并查集是一种很不一样的树形结构。常用来解决 连接问题

并查集的操作,时间复杂度近乎是O(1)的。(指的是路径压缩后的并查集)

并查集主要支持两个操作:
union(p,q):将p和q合并在一起
find(p):查找p在哪个组中
因此,并查集可以用来回答一个问题: isConnected(p,q) (判断p和q是否在同一个组中,是否连接在一起)

 

QuickUnion及优化方法

常规思路的 QuickUnion中,union操作的复杂度是O(n),find操作的复杂度是O(1),这是因为:

  • find(p)操作:只需返回p对应的组号即可
  • union(p,q)操作:需要将p和q两个组所在的元素全部并到一起(修改p的组或q的组都可以)

对QuickUnion操作进行如下三种优化。
 

优化方法一:将相连通的节点指向同一个根节点(优化的是union操作)

将p和q进行union操作,就是将p的parent指针指向q的根节点(或者将q的parent指针指向p的根节点),如果p和q的根节点是相同的,则认为p和q相连。

QuickUnion 有一个非常快的优化方法:对union函数中的“将p的parent指针指向q的根节点(或者将q的parent指针指向p的根节点)”操作进行如下修改:
 

优化方法二:基于rank的优化(优化的是union操作)

【优化方法1:】
判断p和q的根的大小(维护一个size变量),union的时候,将元素少的并到元素多的里面去(小的根添加到大的根里面去),这样做是为了保证树的高度尽量低。

【优化方法2:】
判断p和q的根节点的高度(维护一个rank变量,rank表示并查集的高度),union的时候,将高度低的并到高度大的里面去(小的根添加到大的根里面去),这样做是为了保证树的高度尽量低。

很显然,第2种,基于rank的优化方法更好。

 

优化方法三:路径压缩(优化的是find操作)

对find操作进行优化,对find函数优化,具体步骤:(以find 4 为例)

【优化方法1:】
找4的parent,如果parent不是根节点,则将4直接连到grandparent节点,(相当于跳了3这一级),然后找2的parent,发现2 的parent为1,不是根节点,将2直接连到grandparent节点,(相当于跳了1这一级)。树的高度变低了。

看中间这幅图:

【优化方法2:】
看右边那幅图,
使用递归的方法,把每个节点的parent节点都设置成根节点,这样可以将树的高度压缩为2,find的时间复杂度可以为O(1).但是递归的过程比较浪费时间

优化方法1更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值