【论文笔记】CVPR2019_SiamRPN++


论文题目:SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks
这篇SiamRPN++是CVPR2019的Oral,和另一篇CVPR2019的另一篇Oral文章SiamDW解决的是同一个问题:就是跟踪网络如何做的更深?

作者专栏 https://zhuanlan.zhihu.com/p/56254712

Motivation

主要解决的问题是:深层网络ResNet、Inception等网络应用到基于孪生网络的跟踪网络中。
在SiameseFC算法之后,尽管已经有很多的基于孪生网络的跟踪算法,但这些网络都使用浅层的类AlexNet做为基准特征提取器,直接使用预训练好的深层网络反而会导致跟踪算法精度的下降,因此,这成为了一个基于孪生网络的跟踪器需要解决的一个关键问题!

本文的创新点

  1. 分析了深层网络效果差的原因(因为padding的存在,这个与SiamDW想法类似)
  2. 作者提出了一种spatial aware sampling strategy用来维持平移不变性,平衡深层网络中padding的影响;
  3. 提出了layer wise feature aggregation structure for the cross-correlation operation学习多层特征;
  4. 使用Depth-wise Cross Correlation Layer来做互相关,产生的是2k个response分类响应图和4k个回归响应图(SiamFC只得到了一张响应图)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值