论文题目:SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks
这篇SiamRPN++是CVPR2019的Oral,和另一篇CVPR2019的另一篇Oral文章SiamDW解决的是同一个问题:就是跟踪网络如何做的更深?
作者专栏 https://zhuanlan.zhihu.com/p/56254712
Motivation
主要解决的问题是:深层网络ResNet、Inception等网络应用到基于孪生网络的跟踪网络中。
在SiameseFC算法之后,尽管已经有很多的基于孪生网络的跟踪算法,但这些网络都使用浅层的类AlexNet做为基准特征提取器,直接使用预训练好的深层网络反而会导致跟踪算法精度的下降,因此,这成为了一个基于孪生网络的跟踪器需要解决的一个关键问题!
本文的创新点
- 分析了深层网络效果差的原因(因为padding的存在,这个与SiamDW想法类似)
- 作者提出了一种spatial aware sampling strategy用来维持平移不变性,平衡深层网络中padding的影响;
- 提出了layer wise feature aggregation structure for the cross-correlation operation学习多层特征;
- 使用Depth-wise Cross Correlation Layer来做互相关,产生的是2k个response分类响应图和4k个回归响应图(SiamFC只得到了一张响应图)