题目描述
In the second year of the university somebody started a study on the romantic relations between the students. The relation “romantically involved” is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been “romantically involved”. The result of the program is the number of students in such a set.
算法思路
- 其实是有很多建图的方法的。
- 本题不存在homosexual的情况,所以只有男女可以连边,所以这是一个标准的二分图。
- 我们可以将人分成标准的两个集合,就可以使用最大匹配算法来解题了。但是这样做需要多次进行计算,防止两个集合中的元素出现交叉。所以,我们不需要那样建图。
- 下面证明,答案是顶点数-最大匹配数
首先,如果i,j之间存在边,那么两个人不能同时入选,而当前的匹配数小于最大匹配数的时候,那么就存在增广路径不符合要求,所以一定是顶点数-最大匹配数。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define MAXN 505
int n;
int grid[MAXN][MAXN];
int match[MAXN];
bool visited[MAXN];
void get_Graph()
{
memset(match,-1,sizeof(match));
memset(grid,0,sizeof(grid));
int i,tag1,m,tag2,j;
for(i=0;i<n;i++){
scanf("%d: (%d)",&tag1,&m);
for(j=0;j<m;j++){
scanf("%d",&tag2);
grid[tag1][tag2] = 1;
}
}
return;
}
bool Dfs(int index)
{
int i;
for(i=0;i<n;i++){
if(!grid[index][i] || visited[i])continue;
else{
visited[i] = true;
if(match[i]<0 || Dfs(match[i])){
match[i] = index;
return true;
}
}
}
return false;
}
void Solve()
{
int i;
int ans = 0;
for(i=0;i<n;i++){
memset(visited,false,sizeof(visited));
if(Dfs(i))ans++;
}
printf("%d\n",n-ans/2);
}
int main()
{
//freopen("input","r",stdin);
while(scanf("%d",&n)!=EOF){
get_Graph();
Solve();
}
return 0;
}