Java
文章平均质量分 92
Aaron_945
这个作者很懒,什么都没留下…
展开
-
StarSpider:一款高效的网络爬虫框架解析与实战
StarSpider基于Java语言开发,采用模块化设计,将网络爬虫的各个环节(如页面下载、内容解析、数据存储等)进行了有效解耦,使得开发者可以灵活地定制和扩展自己的爬虫。高效下载:利用HTTP客户端库(如HttpClient)实现高效的网页下载。智能解析:通过内置的DOM解析器或XPath/CSS选择器,智能提取页面中的目标数据。灵活调度:支持多线程/多进程抓取,以及分布式抓取,通过任务调度器实现高效的任务分配和负载均衡。数据存储。原创 2024-08-14 22:18:01 · 1193 阅读 · 0 评论 -
WebMagic:强大的Java爬虫框架解析与实战
WebMagic的设计遵循了爬虫开发的基本流程:下载网页、解析网页、提取数据、存储数据。它将这些流程抽象为四个组件:Downloader、PageProcessor、Scheduler、Pipeline,通过这四个组件的协同工作,实现了高效、灵活的网页抓取。Downloader:负责从网络上下载页面,并将页面内容提供给PageProcessor进行解析。:用户自定义的页面解析逻辑,用于解析页面内容,提取需要的数据,并可以生成新的请求任务。Scheduler。原创 2024-08-14 22:12:35 · 1574 阅读 · 0 评论 -
HtmlUnit:探索Web自动化的强大工具
HtmlUnit 是一个开源的“无头”(headless)浏览器,它模拟了浏览器环境,允许开发者在不需要实际浏览器界面的情况下执行JavaScript、CSS、DOM操作以及HTTP请求。它模拟了浏览器的许多方面,包括DOM操作、CSS选择器、AJAX请求等,使得开发者可以在服务器端或无需图形界面的环境中执行Web应用程序的自动化测试。通过模拟浏览器的行为,HtmlUnit使得开发者能够在无需实际浏览器界面的情况下执行复杂的Web操作。对于AJAX请求,HtmlUnit提供了。原创 2024-08-12 20:21:42 · 1094 阅读 · 0 评论 -
Gson:深入理解与实战应用
当Gson的默认序列化/反序列化行为不满足需求时,可以通过实现和接口来自定义序列化/反序列化逻辑。// 自定义序列化器 public static class PersonSerializer implements JsonSerializer < Person > {// 自定义格式 return jsonObject;原创 2024-08-11 22:11:21 · 486 阅读 · 0 评论 -
Jsoup:一款强大的Java HTML解析器
Jsoup作为一款基于Java的HTML解析器,凭借其简洁的API、强大的选择器、良好的安全性、灵活性以及纯Java实现的优势,在Java开发者中广受欢迎。Jsoup 是一款基于 Java 的 HTML 解析器,它提供了一套非常省力的 API,可以直接解析 URL 地址、HTML 文本内容,并通过 DOM、CSS 以及类似于 jQuery 的操作方法来取出和操作数据。:不仅可以从URL、文件或字符串中加载HTML,还支持自定义的解析器设置,如设置请求头、代理等,满足不同的网络请求需求。原创 2024-08-11 22:04:26 · 655 阅读 · 0 评论 -
Hibernate技术深度解析
Hibernate 支持 HQL(Hibernate Query Language)和 Criteria API 两种查询方式,允许开发者编写更灵活、更复杂的查询语句。原创 2024-08-10 22:11:01 · 1188 阅读 · 0 评论 -
探索 Google Guava
Google Guava 是一个功能强大且广泛使用的 Java 核心库,它通过提供大量的实用工具类和方法,显著提高了 Java 程序的性能、可靠性和可维护性。从基础的使用场景如集合操作和缓存管理,到高级特性如并发编程和字符串处理,Guava 都为开发者提供了极大的便利。:Guava 通过提供大量的实用方法和类,减少了样板代码的数量,使得 Java 程序的编写更加简洁明了。:Guava 提供的许多工具类都经过了精心设计和优化,相比 Java 标准库中的等价实现,它们在性能上往往有更好的表现。原创 2024-08-10 22:05:43 · 993 阅读 · 0 评论 -
Apache Beam: 复杂的数据处理模型
Apache Beam 是一个开源的统一编程模型,用于构建复杂的数据处理管道。它支持批处理和流处理,能够跨多个大数据执行引擎无缝运行。本文将详细介绍 Apache Beam 的原理、基础使用、高级使用,并通过示例展示其优势。Apache Beam 的核心概念包括 Pipeline、PCollection、PTransform 和 Runner。Pipeline:代表整个数据处理任务。:代表数据集,可以是有限的(批处理)或无限的(流处理)。PTransform:代表数据转换操作。Runner。原创 2024-08-06 20:15:14 · 1683 阅读 · 0 评论 -
Apache Flink:一个开源流处理框架
Flink 的核心在于其分布式流处理引擎,该引擎能够连续处理无界和有界数据流。Flink 采用了分层的设计架构,包括 API 层、运行时层(包括任务调度、资源管理、容错处理等)和存储层(支持多种状态后端)。原创 2024-08-05 22:41:27 · 1070 阅读 · 0 评论 -
Apache Hive 技术
Apache Hive 是一个建立在 Hadoop 上的数据仓库基础架构,它提供了类似于 SQL 的查询语言 HiveQL(Hive Query Language),使得用户能够轻松地对存储在 Hadoop 分布式文件系统(HDFS)中的大规模数据进行查询和管理。Hive 旨在降低大数据分析的门槛,让传统数据库开发人员和数据分析师能够利用 Hadoop 的强大能力来处理海量数据。Hive 支持用户自定义函数(UDF),允许用户根据具体需求实现特定的数据处理逻辑。原创 2024-08-04 19:46:04 · 1121 阅读 · 0 评论 -
Apache Hadoop技术详解
Apache Hadoop是一个强大的分布式系统基础架构,它通过HDFS和MapReduce等核心组件,为处理大规模数据集提供了高效、可靠和可扩展的解决方案。:Hadoop的分布式计算框架,允许程序员在不了解分布式系统底层细节的情况下,编写处理大规模数据的程序。HDFS将数据分散存储在集群中的多个节点上,每个节点存储数据的一个分片,并维护多个副本以确保数据的可靠性和可用性。最后,Apache Hadoop的官方网站提供了丰富的文档、教程和社区支持,是学习和使用Hadoop的重要资源。原创 2024-08-04 19:41:59 · 1344 阅读 · 0 评论 -
Apache Storm:实时数据处理的闪电战
Apache Storm 是一个强大的实时计算系统,它提供了高吞吐量、低延迟、可扩展性和容错性等优点。通过理解 Storm 的原理、掌握其基础使用和高级特性,你可以利用它来构建高效的实时数据处理应用。希望本文能够为你提供有用的参考和指导。原创 2024-08-02 17:55:29 · 1714 阅读 · 0 评论 -
Miaosha: 秒杀系统
Miaosha(秒杀系统)是针对电商领域中的秒杀活动而设计的一种高并发、高性能的系统架构。Miaosha 秒杀系统通过分布式架构、流量控制、库存预热与扣减等关键技术手段,为电商领域中的秒杀活动提供了高效、稳定的解决方案。在实际应用中,需要根据具体业务需求和资源条件来选择合适的系统架构和技术方案。秒杀开始时,系统采用高效的库存扣减算法(如乐观锁、悲观锁、Redis 原子操作等),确保库存扣减的准确性和并发性。利用云平台的弹性伸缩能力,根据秒杀活动的实时负载情况自动调整服务组件的实例数量,以应对流量的波动。原创 2024-07-25 18:13:45 · 732 阅读 · 0 评论 -
Apache Spark:深度解析
通过深入理解 Spark 的原理和特性,并掌握其基础使用和高级功能,开发者可以更好地利用 Spark 来解决复杂的大数据问题。转换操作是懒执行的,只有当行动操作被触发时,Spark 才会开始计算。当触发行动操作时,Spark 会将 RDD 的转换操作组织成一个 DAG,然后将其划分为多个阶段(Stage),每个阶段包含多个任务(Task),并在集群的多个节点上并行执行。DataFrame 是 Spark SQL 的核心概念,它是一个分布式的行集合,类似于关系数据库中的表或 R/Python 中的数据框。原创 2024-07-25 18:09:56 · 930 阅读 · 0 评论 -
ShardingSphere-ElasticJob:分布式任务调度的深度解析
ElasticJob 支持作业监听器,可以在作业执行前后进行自定义操作,如日志记录、权限校验等。原创 2024-07-24 20:50:36 · 927 阅读 · 0 评论 -
Apache Dubbo:分布式服务框架的深度解析
同时,Dubbo 提供了丰富的服务治理功能,如负载均衡、集群容错、服务注册与发现等,为构建稳定、可靠、可扩展的分布式系统提供了有力支持。Dubbo 对注册中心的依赖,虽然简化了服务发现的复杂度,但也增加了系统的外部依赖和维护成本。但总的来说,随着微服务架构的日益普及,Dubbo 凭借其强大的功能和良好的性能,在分布式系统构建中仍然具有广泛的应用前景。服务提供者负责发布服务到注册中心,服务消费者从注册中心订阅服务,注册中心负责服务的注册与发现,监控中心则负责统计服务的调用次数和调用时间等。原创 2024-07-24 20:42:29 · 1002 阅读 · 0 评论 -
Lottie:动态动画的魔法棒
虽然 Lottie 主要用于播放预定义的动画,但你也可以通过修改 JSON 文件或使用 Lottie 的编程接口来自定义动画的一些方面,如颜色、大小等。Lottie 是一个强大的动画库,它极大地简化了跨平台动画的实现过程。通过它,设计师和开发者可以更加紧密地合作,共同创造出令人惊叹的动画效果。如果你正在寻找一个简单、高效且跨平台的动画解决方案,那么 Lottie 绝对值得一试。原创 2024-07-23 21:59:00 · 983 阅读 · 0 评论 -
Apache Kafka 使用详解
随着技术的进步和社区的不断贡献,Kafka 的功能和性能将会进一步提升,为更多的实时数据处理场景提供强大的支持。因此,对于需要处理大规模实时数据的组织来说,学习和掌握Kafka 的使用是非常有价值的。生产者发送消息到指定的Topic,Kafka根据分区规则(如轮询、随机、基于key的哈希等)将消息分配到不同的Partition中。它支持连接多种数据源,如数据库、文件系统、云存储等。Kafka Streams 是一个用于构建实时流处理应用程序的客户端库,它允许开发者以声明式的方式处理Kafka中的数据流。原创 2024-07-23 21:52:11 · 1565 阅读 · 0 评论 -
Log4j:深入理解其原理及使用
Log4j提供了扩展接口,允许开发者自定义Appender和Layout,以满足特殊的日志记录需求。原创 2024-07-22 20:25:53 · 690 阅读 · 0 评论 -
Apache Commons技术详解
Apache Commons 是 Apache 软件基金会下的一个项目,旨在提供可重用的Java组件。这些组件覆盖了广泛的编程任务,从字符串处理、数学计算到并发编程等,极大地简化了Java开发过程。本文将介绍Apache Commons的基本原理、基础使用、高级使用以及它的优缺点,并附上官网链接。Apache Commons 是Java开发者不可或缺的工具之一,通过合理使用这些库,可以大大提高开发效率和代码质量。原创 2024-07-22 20:22:08 · 1765 阅读 · 0 评论