文章目录
Apache Storm 是一个开源的分布式实时计算系统,它允许你以极高的吞吐量处理无界数据流。Storm 被广泛用于实时分析、在线机器学习、连续计算等多种场景。本文将深入探讨 Apache Storm 的原理、基础使用、高级特性及其优点,并附上官方链接供进一步学习。
Apache Storm 原理
拓扑结构
Storm 的核心概念是“拓扑”(Topology),它定义了计算任务的逻辑结构。一个拓扑由多个“组件”(Components)组成,主要包括两种类型的组件:Spouts 和 Bolts。
- Spouts:Spouts 是拓扑的源头,负责从外部系统(如消息队列、数据库等)读取数据,并将其转换为 Storm 内部的数据格式(Tuple),然后发送给 Bolts 进行处理。
- Bolts:Bolts 负责处理数据,执行各种计算任务。它们可以接收多个输入流,执行自定义的处理逻辑,然后产生输出流。这些输出流可以进一步被其他 Bolts 处理,或者作为最终结果输出。
数据流处理
Storm 通过一种称为“任务”(Task)的并行处理单元来执行数据流处理。每个 Spout 或 Bolt 可以被拆分成多个任务,并在 Storm 集群的不同节点上并行执行。这种并行处理机制使得 Storm 能够以极高的吞吐量处理数据流。
容错机制
Storm 提供了强大的容错机制,确保在节点故障时&#x