【数据结构起航】:衡量算法的好坏--时间空间复杂度

本文探讨了衡量算法效率的两个关键因素——时间复杂度和空间复杂度,强调了在算法设计中时间复杂度的重要性。通过实例解释了大O渐进表示法在计算时间复杂度中的应用,并介绍了不同复杂度量级的比较。
摘要由CSDN通过智能技术生成

时间复杂度和空间复杂度

在这里插入图片描述


 

1.算法效率

 

1.1算法复杂度

  如何衡量一个算法的好坏呢?例如小红和小明面对一个OJ题,设计出各自的算法,解决了这道OJ题,那么我们如何评断是谁的算法更好呢?答案是:衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即我们稍后要谈的时间复杂度和空间复杂度。

  时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,也根据摩尔定律,计算机的存储容量已经达到了很高的程度。所以我们如今相比空间复杂度,我们更关注时间复杂度。

 

1.2复杂度在OJ里的应用

  而在校招中,笔试题主要采取OJ的形式,所以复杂度在校招的考察中是很重要的。例如:要实现一个排序功能,你使用的是冒泡排序,而别人用的是快速排序,虽然元素较少时排序效果差别不大,但是在算法效率上后者要优良很多。

 

2.时间复杂度

 

2.1时间复杂度的概率

  ⚠误区:时间复杂度并不是指一个程序运行所需要的时间,因为硬件设备的不同,程序运行的时间也不同。所以一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。

  在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

 

举例:

void Func1(int N)
{
   
	int count = 0;
    //基本操作执行次数:N^2	
	for (int i = 0; i < N ; ++ i)
	{
   
		for (int j = 0; j < N ; ++ j)
		{
   
			++count;
		}
	}

    //基本操作执行次数:2*N
	for (int k = 0; k < 2 * N ; ++ k)
	{
   
		++count;
	}

    //基本操作执行次数:10
	int M = 10;
	while (M--)
	{
   
		++count;
	}

	printf("%d\n", count);
}

 

Func1 执行的基本操作次数 :
F ( N ) = N 2 + 2 ∗ N + 10 F(N) = N^2 + 2*N + 10 F(N)=N2+2N

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值