时间复杂度和空间复杂度
文章目录
1.算法效率
1.1算法复杂度
如何衡量一个算法的好坏呢?例如小红和小明面对一个OJ题,设计出各自的算法,解决了这道OJ题,那么我们如何评断是谁的算法更好呢?答案是:衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即我们稍后要谈的时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,也根据摩尔定律,计算机的存储容量已经达到了很高的程度。所以我们如今相比空间复杂度,我们更关注时间复杂度。
1.2复杂度在OJ里的应用
而在校招中,笔试题主要采取OJ的形式,所以复杂度在校招的考察中是很重要的。例如:要实现一个排序功能,你使用的是冒泡排序,而别人用的是快速排序,虽然元素较少时排序效果差别不大,但是在算法效率上后者要优良很多。
2.时间复杂度
2.1时间复杂度的概率
⚠误区:时间复杂度并不是指一个程序运行所需要的时间,因为硬件设备的不同,程序运行的时间也不同。所以一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。
在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
举例:
void Func1(int N)
{
int count = 0;
//基本操作执行次数:N^2
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
//基本操作执行次数:2*N
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
//基本操作执行次数:10
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
Func1 执行的基本操作次数 :
F ( N ) = N 2 + 2 ∗ N + 10 F(N) = N^2 + 2*N + 10 F(N)=N2+2∗N