基于QT,C++和opencv 的人脸识别项目(三)

本文详细介绍了基于OpenCV的人脸检测原理,包括Haar特征、Adaboost和级联分类器。此外,还概述了特征脸算法Eigenface在人脸识别中的应用。文章分为人脸检测和人脸识别两部分,深入探讨了这两个过程的关键技术和步骤。
摘要由CSDN通过智能技术生成

1.引言

本篇文章是人脸检测和人脸识别的原理的介绍。主要是Haar+Adaboost和和三大经典人脸识别算法其中的Eigenface的原理。

这是本项目的第三篇文章。
第一篇文章,主要介绍项目的任务和实验环境,点击阅读
第二篇文章,主要介绍opencv和相关模型,点击阅读
第四篇文章,主要介绍PCA降维和人脸识别的原理,点击阅读
第五篇文章,主要给出相关的代码,点击阅读

2.正文

前言

首先说一下,现在好多博客都没弄懂什么是人脸识别什么是人脸检测,每次都点进去一个人脸识别的项目,结果就是一个简简单单的人脸检测。
人脸检测就是简单的在视频、摄像头或者图片中用框框标出人脸的位置,没有其他多余的标注,但是对于人脸识别,首先需要录入自己的人脸,再训练出模型,通过模型对视频、摄像头或者图片中的人进行检测+标注出名字等相关的信息。
打个简单的比方,人脸检测就是一条狗能做的:这里是个人脸,叫几声吓吓他。人脸识别则是一个小孩:这是我爹,这是我娘。

opencv实现人脸检测主要是通过haar级联分类器。
我在人脸检测部分将详细的介绍怎么来训练这个分类器。

opencv实现人脸识别有三个主要的算法:
EIgenface 特征脸算法
FisherFace算法
LBP局部二值直方图
我在人脸识别部分将详细的介绍特征脸算法的原理。

人脸检测原理

人脸检测的目标是找出图像中所有的人脸对应的位置,算法的输出是人脸外接矩形在图像中的坐标,可能还包括姿态如倾斜角度等信息。下面是一张图像的人脸检测结果:

在这里插入图片描述
虽然人脸的结构是确定的,由眉毛、眼睛、鼻子和嘴等部位组成,近似是一个刚体,但由于姿态和表情的变化,不同人的外观差异,光照,遮挡的影响,准确的检测处于各种条件下的人脸是一件相对困难的事情。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值