深度学习
文章平均质量分 62
ab0902cd
这个作者很懒,什么都没留下…
展开
-
分组卷积与dw卷积
分组卷积、可分离卷积原创 2022-12-28 15:33:54 · 2649 阅读 · 0 评论 -
kaldi 源码安装
kaldi安装原创 2022-07-14 14:17:39 · 1024 阅读 · 0 评论 -
文本特征向量抽取及PCA降维
降维原创 2022-06-02 17:19:12 · 906 阅读 · 2 评论 -
crnn编译环境
源码克隆编译安装:https://github.com/SeanNaren/warp-ctc1. gcc==5.2 cmake=3 pytorch=1.1.02. warp-ctc安装git clone https://github.com/SeanNaren/warp-ctc.gitcd warp-ctcmkdir build; cd buildcmake ..make...原创 2019-08-17 11:24:24 · 502 阅读 · 0 评论 -
tensorflow获取动态shape
tf.shape(a)和a.get_shape()比较相同点:都可以得到tensor a的尺寸不同点:tf.shape()中a 数据的类型可以是tensor, list, array a.get_shape()中a的数据类型只能是tensor,且返回的是一个元组(tuple)如果需要根据上一层的动态shape计算当前层的shape,该如何做呢x=tf.placeholder(tf.float32, shape=[None, 227,227,3] )但在运行的时候想知道None到原创 2022-03-31 15:16:29 · 2549 阅读 · 0 评论 -
onnx重写输入和输出的维度
onnx模型输入是静态的,比如是1x3x960x960,但是想把输入改成动态输入,相应的输出也得改成动态,以下代码可以修改onnx模型的维度:import onnximport onnx.checkerimport onnx.utilsfrom onnx.tools import update_model_dims model = onnx.load('infer_rec.onnx')# 此处可以理解为获得了一个维度 “引用”,通过该 “引用“可以修改其对应的维度原创 2021-09-09 14:28:24 · 8205 阅读 · 4 评论 -
感受野的计算
感受野的计算感受野(Receptive Field),指的是神经网络中神经元“看到的”输入区域,在卷积神经网络中,feature map上某个元素的计算受输入图像上某个区域的影响,这个区域即该元素的感受野。卷积神经网络中,越深层的神经元看到的输入区域越大,如下图所示,kernel size 均为3×33×3,stride均为1,绿色标记的是Layer2Layer2每个神经元看到的区域,黄色标记的是Layer3Layer3看到的区域,具体地,Layer2Layer2每个神经元可看到Layer1La..原创 2020-11-21 15:03:58 · 494 阅读 · 0 评论