机器学习:批量梯度下降法(线性回归中的使用)

一、推导目标函数

 1)基础概念
  • 多元线性回归模型:
  • 多元线性回归的损失函数:
  • 参数 theta:θ = (θ0, θ1, θ3, ..., θn)
  • n:表示模型中有 n 个特征参数;
  • θ1:表示
  • 梯度:,对每一个 θi 求一次偏导数;
  • 梯度代表方向:对应 J 增大最快的方向;
  • 偏导数:函数 J 中含有 n 个未知数,每次知道其中的一个未知数求导,其它数看作常量,求得的数是函数 J 的偏导数;
  • 学习率:η
  • theta每次变化量: | 学习率 X 梯度 | == -η *  ▽J ;(带负号 “ - ” ,因为损失函数与参数负相关,其导数值为负,变化量要为正数)

 

 2)梯度下降原理
  1. 此图为有两个参数的梯度下降法的可视化:z = x2 + 2y2
  2. 一圈圈的红线为等高线,也就是每次参数x、y的变化后目标函数 z 的取值;
  3. 越外圈的 z 的取值越大,中心位置表示 z 的最小值;
  4. z 的取值可以延不同的方向逐层下降,箭头表示梯度下降的方向,也是 z 的取值变化最快的方向;
  5. 圈与圈之间的间距为目标函数 z 的变化量;
  6. 最外圈的间距较大,也就是 z 的变化量较大;

 

 3)推导目标函数
  • 线性回归算法中的目标函数的第一次变形

 

 

  • 分析目标函数
  1. ▽J(θ) 中,θ 是未知数,X 是样本中的已知数;
  2. 公式变形思路:▽J(θ) 中的每一项都是 m 项的求和,因此梯度的大小跟样本数量有关,样本数量越大,梯度中的每一个元素值也就越大,因此所求得的梯度中的每一个元素的值,受到了 m 的影响,而在优化的过程中,梯度中的每一个元素的值最好和 m 无关;

 

  • 确定最终的目标函数
  1. 目标函数变形——确定使用梯度法所要优化的最终的目标函数:J(θ) = MSE (y, ý)
  2. 添加一个 1/m 是为了减小梯度的元素值;

 

 4)思考总结
  • 当使用梯度下降法求解目标函数的最小值时,需要特殊设计目标函数,不见得所有的目标函数都非常合适此方法,虽然理论上即使梯度中的元素值很大,依然可以通过调整 η 得到想要的结果,但是这样可能会影响效率;

 

二、算法的实现(1)

 1)解决简单线性回归算法
  • 模拟简单线性回归
    import numpy as np
    
    np.random.seed(666)
    x = 2 * np.random.random(size=100)
    y = x * 3. + 4. + np.random.normal(size=100)
    
    X = x.reshape(-1, 1)

    # np.random.normal(size=100):噪音,用均值为0,方差为1的随机正态分布生成

 

  • 计算损失函数值(损失函数:J(θ) = MSE(y, ý))
    # x_b:变形后的X_train中的Xb,增加了第一列全为1之后的矩阵
    # y:y_train
    def J(theta, x_b, y):
        try:
            return np.sum((y 
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值