Legolas~
码龄5年
  • 273,877
    被访问
  • 205
    原创
  • 6,231
    排名
  • 142
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2017-05-22
博客简介:

qq_38883271的博客

查看详细资料
  • 4
    领奖
    总分 893 当月 87
个人成就
  • 获得279次点赞
  • 内容获得83次评论
  • 获得1,329次收藏
创作历程
  • 1篇
    2022年
  • 28篇
    2021年
  • 116篇
    2020年
  • 60篇
    2019年
成就勋章
TA的专栏
  • Pytorch
    13篇
  • Docker
    1篇
  • springboot
    1篇
  • ubuntu
    1篇
  • Linux
    2篇
  • 模式识别
    9篇
  • 数据科学
    4篇
  • Leetcode
    3篇
  • GitHub
    1篇
  • 目标识别
    4篇
  • Keras
    2篇
  • 机器学习
    36篇
  • 深度学习
    32篇
  • Go语言
    5篇
  • python
    27篇
  • 图像处理
    12篇
  • 算法图论
    2篇
  • MySQL学习笔记
    8篇
  • NLP自然语言处理
    7篇
  • java
    20篇
  • 数据结构与算法
    3篇
  • c++
    5篇
  • tensorflow
    6篇
  • TCP
    1篇
  • 哈希表
    1篇
  • 密码学
    5篇
  • 智能算法
    1篇
  • BP神经网络
    4篇
  • 汇编语言
    3篇
  • C语言小程序
    2篇
  • matlab
    2篇
兴趣领域 设置
  • 大数据
    hadoophivestormsparketl
  • 数据库管理
    数据仓库
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络pytorch图像处理scikit-learn
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

torch的cumsum

函数作用:在张量的某个维度上进行累加从语言描述上比较抽象,看下以下代码加以说明(针对二维张量):import numpy as npx = np.array([[1, 2, 3], [4, 5, 6]])x = torch.from_numpy(x)这时x的结果为:tensor([[1, 2, 3], [4, 5, 6]])使用cumsum:x_ = x.cumsum(dim=0)x_的结果为:tensor([[1, 2, 3], [5, 7, 9
原创
发布博客 2022.05.04 ·
270 阅读 ·
1 点赞 ·
0 评论

非root用户如何更改docker权限

对于非root用户每次使用docker命令都需要加上sudo,这显示是一件很麻烦的事情,那么对于非root用户如何更改docker权限呢?sudo groupadd docker 创建docker用户组(组名为docker)sudo gpasswd -a${USER} docker 将非root用户加入该组内(此时终端会显示:正在将用户xxx加入到"docker"组中)sudo service docker restart 重启docker服务newgrp - docker 切换当前会话到新gro
原创
发布博客 2021.09.12 ·
208 阅读 ·
0 点赞 ·
0 评论

SpringBoot——ResponseBody

很多情况下我们希望后端的调用结果能直接写入Http的响应体中以供前端获取来更新页面显示,此时需要我们在以@controller为注解的类中对相应方法加上@ResponseBody注解:@Controllerclass HelloWorldController { @RequestMapping("/hello") @ResponseBody public String hello(){ return "Hello World!"; }}我们也可
原创
发布博客 2021.09.05 ·
159 阅读 ·
0 点赞 ·
0 评论

StyleGAN源码之FID

看到很多网友在用StyleGAN训练自己的数据集的时候都忽略了fid,源码中fid利用了inception v3的pertained model,源码写的是要从谷歌网盘下载该pretrained model,如果只想run着玩可以忽略fid的计算,把相应代码注释掉;否则最好提前下载下来然后在本地目录导入下载好的inception v3即可。源码FID的位置:metrics/frechet_inception_distance.py调用FID的位置:metrics/metric_base.py实际的
原创
发布博客 2021.09.05 ·
228 阅读 ·
0 点赞 ·
0 评论

ubuntu查看conda环境并选择其他环境进入

conda info --envs 查看现有conda环境,终端会显示环境名称和所在路径conda activate 环境名称 重新激活环境并进入
原创
发布博客 2021.06.22 ·
1348 阅读 ·
2 点赞 ·
0 评论

Tensorflow配置参数

import tensorflow as tftf.compat.v1.app.flags.DEFINE_integer('batch_size', 100, help='The size of each batch.')tf.compat.v1.app.flags.DEFINE_integer('epoch', 10000, help='The epoch of training.')tf.compat.v1.app.flags.DEFINE_string('saved_models', './s
原创
发布博客 2021.06.03 ·
58 阅读 ·
0 点赞 ·
0 评论

python请求网页将图片保存本地

标准写法:from urllib import requestfrom urllib import errorif __name__ == "__main__": url = r"http://z.about.com/d/fashion/1/0/v/1/3/80998678_10.jpg" headers = {'User-Agent': 'Mozilla/5.0'} path = './1.jpg' req = request.Request(url, heade
原创
发布博客 2021.06.02 ·
172 阅读 ·
0 点赞 ·
0 评论

利用python的absl配置参数

将深度学习应用到CV领域必不可少的要搭建模型,训练网络,一般模型搭建为一个py文件,网络训练为一个py文件,其中网络训练需要大量参数设置,比如张量运行的设备(CPU or GPU),初始学习率,训练次数,批次大小,图像裁剪尺寸等等,如果我们在程序中随意定义并初始化这些参数不免显得程序非常凌乱,而且维护性较差,同时占用内存,那么一个好的方法就是在程序的开头将其全部声明和初始化并且打包成一个整体,下面看代码:from ansl import flags, appflags.DEFINE_string('参
原创
发布博客 2021.05.20 ·
345 阅读 ·
1 点赞 ·
0 评论

Python:collections的namedtuple

collections模块不太常用,之前我也从未接触过,最近在看EfficientNet的源码发现程序中作者用了collections.namedtuple方法,于是help了一下查看官方说明文档:>>> import collections>>> help(collections.namedtuple)Help on function namedtuple in module collections:namedtuple(typename, field_nam
原创
发布博客 2021.05.19 ·
20 阅读 ·
0 点赞 ·
0 评论

WGAN解读(一)

WGAN全称Wasserstein GAN,重点以及和DCGAN的不同之处在于Wasserstein,Wasserstein是个啥呢?网上有很多很棒的解答,这里直接送上传送门KL散度、JS散度、Wasserstein距离WGAN的作者选择Wasserstein距离来度量真实图像分布和生成图像分布之间的距离,目标即为最小化该距离。尽管Wasserstein距离从公式的形式上来看比较复杂难懂,但是结合代码实现来看其实非常简单。官方GitHub给出的代码如下:loss_D = -torch.mean(dis
原创
发布博客 2021.05.13 ·
1450 阅读 ·
0 点赞 ·
0 评论

【机器学习随笔】数学符号

infinfinf(全称:infimum):集合下界supsupsup(全称:supremum):集合上界
原创
发布博客 2021.05.13 ·
46 阅读 ·
0 点赞 ·
0 评论

如何判断链表有环

1.链表有无环(面试常考):思路1:集合操作利用集合元素唯一性的特点,从链表的头部开始遍历,依次将结点放入集合中,并且每放入一个结点都需判断该集合的长度与前一次放入结点时有无变化,如果长度没有变化,则说明链表有环,如果遍历到尾结点,链表的长度均依次递增,说明链表没有环。例题:leetcode141.代码(python):# Definition for singly-linked list.# class ListNode:# def __init__(self, x):#
原创
发布博客 2021.05.13 ·
35 阅读 ·
0 点赞 ·
0 评论

图像识别最新进展:来自Google Brain Team的MLP-Mixer

CV领域最近几年发展火热,各种先进算法、模型层出不穷,CV领域的科研工作者和从业者也被迫需要天天学习新的structure,幻想有朝一日能够提出实现SOTA的方法。图像识别兜兜转转,居然从MLP开始经过CNN、Transformer又回到了MLP,近日,谷歌大脑团队提出的MLP-Mixer又引发了CV领域的浪潮,论文发布在arXiv,仔细发现参与的研究者大多也是Vision Transformer(ViT)的提出者,通过论文中的实验结论我们可以发现MLP-Mixer在JFT-300M数据集上的识别精度相比V
原创
发布博客 2021.05.10 ·
260 阅读 ·
1 点赞 ·
0 评论

打印模型训练过程中的学习率

print(optimizer.state_dict()['param_groups'][0]['lr'])
原创
发布博客 2021.05.09 ·
291 阅读 ·
1 点赞 ·
0 评论

热重启的随机梯度下降

看了CSDN的一些博客感觉讲的都不是很清晰,这里简单分析一下:首先基于热重启的学习率衰减策略可以说是余弦退火衰减策略的进化。余弦退火学习率衰减策略在整个训练过程持续衰减直到学习率为0,那么当损失函数的值陷入局部最优值的时候,越来越小的学习率显然难以跳出局部最优值。而热重启很好地解决了这个问题,先摆上公式和图像:首先利用大白话讲一下为什么叫“热重启”,“重启”指的是每间隔TiT_iTi​次迭代学习率重启一次,并且每次重启后的状态与之前相同(就好比电脑重启一个道理,暂且我们认定电脑只含有一个操作系统,电
原创
发布博客 2021.05.09 ·
387 阅读 ·
3 点赞 ·
0 评论

图像评估指标:PSNR

公式:MSEMSEMSE:模型的输出图像与真实图像之间的均方误差MAXMAXMAX:nnn位RGB图像所能取到的最大值(例如nnn===888,此时MAXMAXMAX===2228^{8}8−-−111===255255255)意义(重点,面试常考):峰值信号的能量与噪声的平均能量之比代码实现:def psnr(pred, gt): pred = pred.clamp(0, 1).cpu().numpy() gt = gt.clamp(0, 1).cpu().numpy()
原创
发布博客 2021.05.09 ·
412 阅读 ·
0 点赞 ·
1 评论

Leetcode笔记3

题目:剑指offer 05.替换空格:解答传送门剑指Offer05.替换空格
原创
发布博客 2021.05.08 ·
18 阅读 ·
0 点赞 ·
0 评论

深度学习训练遇到的坑(一)

如果使用的训练集图像的分辨率很高(几千x几千的那种),不要在训练的过程中将resize图像方法封装到transforms.Compose中,这样会使得resize图像的过程变得特别慢,最好的方法是在训练之前就对所有图像做预处理,利用opencv的resize方法对训练集和验证集图像全部裁剪成特定尺寸,得到低分辨率的图像后再进行训练。...
原创
发布博客 2021.05.08 ·
201 阅读 ·
0 点赞 ·
1 评论

Helen人脸数据集生成人脸分割

Helen人脸数据集包括2330张人脸图像,并且每张人脸图像包含11个部位的掩模,通常做人脸分割只需要面部以及面部特征掩模即可。数据集文件的整体结构如下:依赖的库:import osimport cv2 as cvimport numpy as np定义人脸分割不同部位的颜色:colors = [[160, 0, 10], [11, 138, 19], [11, 138, 19], [21, 83, 184], [21, 83, 184], [33, 182, 151], [255, 16,
原创
发布博客 2021.05.08 ·
403 阅读 ·
0 点赞 ·
0 评论

图像风格迁移及代码实现

图像风格迁移其实非常好理解,就是将一张图像的“风格”(风格图像)迁移至另外一张图像(内容图像),但是这所谓的另外一张图像只是在“风格”上与之前有所不同,图像的“内容”仍要与之前相同。Luan et al. and Gatys et al. 的工作都是利用VGGNet19作为该项任务的backbone,由于VGGNet19是一种近似“金字塔”型结构,所以随着卷积操作的加深,feature maps的感受野越来越大,提取到的图像特征从局部扩展到了全局。我们为了避免合成的图像过多地保留内容信息,选取VGGNet1
原创
发布博客 2021.05.07 ·
1943 阅读 ·
1 点赞 ·
10 评论
加载更多