LRJ-jonas
码龄4年
关注
提问 私信
  • 博客:197,191
    社区:18
    问答:875
    动态:725
    198,809
    总访问量
  • 102
    原创
  • 53,811
    排名
  • 4,621
    粉丝
  • 90
    铁粉
  • 学习成就

个人简介:药物设计

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 毕业院校: 华东理工大学
  • 加入CSDN时间: 2021-02-02
博客简介:

LRJ的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,594
    当月
    5
个人成就
  • 获得108次点赞
  • 内容获得22次评论
  • 获得471次收藏
  • 代码片获得1,879次分享
创作历程
  • 2篇
    2024年
  • 42篇
    2023年
  • 53篇
    2022年
  • 20篇
    2021年
成就勋章
TA的专栏
  • 笔记
    12篇
  • python
    29篇
  • 软件平台使用
    4篇
  • 化合物
    5篇
  • 模型训练
    12篇
  • 神经网络
    8篇
  • chemdraw
    2篇
  • GCC
    1篇
  • numpy
    7篇
  • pandas
    6篇
  • 数据统计
    10篇
  • excel
    1篇
  • matplotlib
    3篇
  • 系统操作
    3篇
  • anaconda
    1篇
  • github
    1篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    机器学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

185人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

2024年7月——使用ESM3(进化尺度的蛋白质语言模型)

esm3 蛋白质语言模型
原创
发布博客 2024.07.03 ·
1397 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

efficient evolution 抗体进化模型笔记

通过不同的模型(例如:'esm1b', 'esm1v1', 'esm1v2' 等)进行重构,并比较每个模型生成的突变。此外,还包含了使用 eval_sapiens函数 评价人源相似度。,则返回包含突变计数和模型名称的元组。函数的作用是针对给定的野生型序列。否则,仅返回突变计数。
原创
发布博客 2024.07.03 ·
248 阅读 ·
10 点赞 ·
0 评论 ·
2 收藏

不同领域环境中的“组分分析”

在统计学和机器学习领域,主成分分析是一种降维技术,它通过线性变换将数据转换到一个新的坐标系统中,使得这个新坐标系统的第一坐标轴上的方差最大(即第一主成分),第二坐标轴上的方差次之(即第二主成分),依此类推。组分分析在不同的学术领域和应用场景中可能有不同的含义,但通常它指的是一种分析方法,用于识别和量化一个复杂系统、样本或信号中的各个组成部分。在工程和科学研究中,组分分离技术如蒸馏、萃取、过滤等,都是用于将混合物中的不同组分分开,以便于进一步的分析或使用。
原创
发布博客 2023.12.25 ·
404 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

用于药物发现的知识图谱

本教程全面概述了长期存在的药物发现原理,提供了图结构数据和知识数据库的基本概念和前沿技术,并正式总结了用于药物发现的知识增强图机器学习 (KaGML)。一个项目是 **KDD2023_KaGML_DrugDiscovery_Tutorial**,它是一个关于药物发现的教程,介绍了如何使用知识增强的图机器学习(KaGML)来进行药物发现¹。另一个项目是 **integrating_knowledge_data**,它是一个将基因表达和生物知识整合到药物发现和再利用中的项目²。
原创
发布博客 2023.12.01 ·
267 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

定时编辑器软件TimeEditor压缩包

发布资源 2023.11.27 ·
zip

DeepPurpose深度学习工具包

DeepPurpose是一个基于深度学习的工具包,可用于药物靶点识别、药物属性预测、蛋白质-蛋白质相互作用预测等¹。它支持多种分子编码任务,包括药物-靶标相互作用预测、化合物属性预测、蛋白质-蛋白质相互作用预测和蛋白质功能预测¹。DeepPurpose通过实现15个化合物和蛋白质编码器以及50多种神经架构,以及提供许多其他有用的功能来支持定制DTI预测模型的训练⁴。它使用PyTorch框架进行深度学习,促进生命科学研究¹。(3) DeepPurpose:药物虚拟筛选、构效关系及更多用途的深度 ....
原创
发布博客 2023.11.26 ·
418 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

np.concatenate

np.concatenate函数是numpy库中用来连接两个或多个数组的函数。运行这段代码,你会得到:`[1 2 3 4 5 6]`,两个数组在一个维度上进行了连接。希望这个例子可以帮助你理解np.concatenate的基本功能。# 在第一个维度上(axis=0,行方向)拼接。# 在第二个维度上(axis=1,列方向)拼接。# 使用np.concatenate进行连接。# 创建两个一维数组。# 创建两个二维数组。
原创
发布博客 2023.09.09 ·
475 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【代码示例】将label转为np数组,并存为pkl文件

首先读取训练集和测试集的复合物的文件地址,去除训练集中与测试集重叠的样本,再打乱顺序。接下来通过活性数据表‘INDEX_general_PL_data.2019’依次对读取。需要说明这里的训练集由于会多旋转9次进行数据增强,所以label会乘以10.最终使用ectend和append添加成数组,保存为np.array。就是训练用的复合物的 pdb id。就是测试用的复合物的 pdb id。接着就可以存为pkl文件。
原创
发布博客 2023.08.21 ·
164 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【蛋白-蛋白】Rosetta InterfaceAnalyzer 学习笔记

这里以(PDB:3R2X)为例,介绍如何利用Rosetta中InterfaceAnalyzer来快速分析蛋白-蛋白相互作用,并提取有价值的信息。注意: InterfaceAnalyzer不可用于蛋白质-小分子相互作用界面分析。使用Rosetta score_jd2 app对输入的PDB文件进行打分可以快速修复结构的方法,确保输入文件能够正确地被Rosetta读取。(提示: 3r2x中存在残基插入码,如A链的264A Gly,因此需要对整个PDB结构进行重编号,否则packsat计算异常。-out:pdb。
原创
发布博客 2023.08.17 ·
1359 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

如果我的VMware虚拟机的Ubuntu22.04系统没有英伟达驱动,该怎么办?

需要注意的是,由于你使用的是VMware虚拟机,可能无法直接安装英伟达官方驱动。因此,即使安装了英伟达驱动,也可能无法实际使用英伟达显卡功能。2. 安装Nouveau驱动:Nouveau是一个开源的英伟达显卡驱动,可以在一些英伟达显卡中提供基本的图形功能。- 禁用Nouveau驱动:在安装英伟达官方驱动之前,需要禁用Nouveau驱动。- 安装依赖项:确保你的系统已安装必要的依赖项,例如`gcc`、`make`和`kernel headers`。如果没有英伟达显卡,那么安装英伟达驱动是没有意义的。
原创
发布博客 2023.08.12 ·
6211 阅读 ·
0 点赞 ·
0 评论 ·
14 收藏

scikit-plot 使用笔记

PCA的目标是将高维数据转换为一组低维的主成分,这些主成分将数据中的方差解释得尽可能好。第一个主成分解释了最大的方差,第二个主成分解释了次大的方差,以此类推。每个主成分都是关于原始特征的线性组合,并且它们之间是正交的(相互之间不相关)。主成分类似于原始数据的投影,但是它们的排序是如此安排,以便第一个主成分解释了最大的方差,第二个主成分解释了次大的方差,以此类推。主成分是原始数据的线性组合,通过这种方式,它们能够捕捉到数据中的最大方差。
原创
发布博客 2023.08.07 ·
400 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

删除工作路径里所有的蛋白质文件的HETATM

linux系统,在终端直接输入运行
原创
发布博客 2023.08.01 ·
197 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Gnina1.0 的复现代码该如何操作?

发布问题 2023.07.22 ·
1 回答

在python中训练Gnina的Caffe模型

Required- Optional* Samplelayer {top: "out"The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x.“BNLL”(二项式正态对数似然)层将每个输入元素 x 的输出计算为 log(1 + exp(x))。## Sample。
原创
发布博客 2023.07.20 ·
238 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Gnina split_caffe_proto.py

脚本尝试创建`../docs/_includes/`和`../docs/_includes/proto/`两个目录,若目录已存在则忽略,若创建失败则抛出异常。6. 使用正则表达式匹配`caffe.proto`文件中的参数定义信息。将参数定义写入以参数名称命名的文本文件,保存在`../docs/_includes/proto/`目录下。4. 构建`caffe.proto`文件的完整路径`caffe_proto_fn`。
原创
发布博客 2023.07.19 ·
1140 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RDKit安装途中可能无法下载的插件,可以自己手动编译安装

发布资源 2023.07.14 ·
gz

源码编译安装RDKit时会遇到这个文件无法下载,所以需要手动编译安装添加到系统的环境变量

发布资源 2023.07.14 ·
gz

使用Py2neo构建知识图谱(概念与实现)

知识图谱的构建方法有很多种,其中比较常见的包括自顶向下和自底向上两种方法。自顶向下构建方法是指从高质量数据中提取本体和模式信息,加入到知识库中;而自底向上构建方法则是从公开采集的数据中提取出资源模式,选择其中置信度较高的新模式,经人工审核之后,加入到知识库中。自顶向下和自底向上是两种不同的构建方法。自顶向下构建方法是指从高质量数据中提取本体和模式信息,加入到知识库中;而自底向上构建方法则是从公开采集的数据中提取出资源模式,选择其中置信度较高的新模式,经人工审核之后,加入到知识库中。
原创
发布博客 2023.06.30 ·
1047 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

深度学习时,对数据归一化的作用?

例如 如果你的一个特征是10000,一个特征是0.2,当这两个输入到任何学习模型中时,学习速度都会很慢。如果两个特征之一为0.1,另一个为0.3,学习速度就会加快。这也是为了避免梯度消失,使每一层更加独立,不受前一层的影响。对于数据本身来说,没有强制要求必须满足正态分布的条件,除非是非正常分布。事实上,我们正在谈论数据标准化。这是一种特征处理方法,使所有标准化特征满足N(0, 1)的标准正态分布。当我们进行深度学习训练时,往往希望数据越接近正态分布越好,这样训练效果就会明显提升。
原创
发布博客 2023.06.23 ·
175 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

官网方法,conda环境安装tensorflow,可使用多个GPU

如果您想要在多台机器上进行分布式训练,您可以使用其他分布式策略,例如 tf.distribute.experimental.MultiWorkerMirroredStrategy 或 tf.distribute.experimental.TPUStrategy。在 TensorFlow 2.4 版本中,可以使用 tf.distribute.MirroredStrategy 来在一台机器的多个 GPU 上进行同步分布式训练。在一台或多台机器上,要顺利地在多个 GPU 上运行,最简单的方法是使用。
原创
发布博客 2023.06.19 ·
954 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多