题面:
L2-004 这是二叉搜索树吗? (25 分)
一棵二叉搜索树可被递归地定义为具有下列性质的二叉树:对于任一结点,
- 其左子树中所有结点的键值小于该结点的键值;
- 其右子树中所有结点的键值大于等于该结点的键值;
- 其左右子树都是二叉搜索树。
所谓二叉搜索树的“镜像”,即将所有结点的左右子树对换位置后所得到的树。
给定一个整数键值序列,现请你编写程序,判断这是否是对一棵二叉搜索树或其镜像进行前序遍历的结果。
输入格式:
输入的第一行给出正整数 N(≤1000)。随后一行给出 N 个整数键值,其间以空格分隔。
输出格式:
如果输入序列是对一棵二叉搜索树或其镜像进行前序遍历的结果,则首先在一行中输出 YES
,然后在下一行输出该树后序遍历的结果。数字间有 1 个空格,一行的首尾不得有多余空格。若答案是否,则输出 NO
。
输入样例 1:
7
8 6 5 7 10 8 11
输出样例 1:
YES
5 7 6 8 11 10 8
输入样例 2:
7
8 10 11 8 6 7 5
输出样例 2:
YES
11 8 10 7 5 6 8
输入样例 3:
7
8 6 8 5 10 9 11
输出样例 3:
NO
这个最主要的就是建树,在我的上一篇文章中 https://blog.csdn.net/ab1605014317/article/details/88080486在这里我详细的介绍了二叉搜索树的一些操作,对于这道题你应该首先判断这棵树是二叉搜索树,还是其的镜像。相对于二叉搜索树来说,镜像就是其性质的相反,也就是说右结点小于其根节点,每个左节点大于其根节点。这就构成了两种建树的方法。我的解题思路是首先建立两棵树,然后把他们的先序遍历分别存储到一个数组中,然后与输入的数组对比,看是其中之一还是都不符合,然后输出对应的后序遍历。
代码如下:
int n;
int a[maxn], b[maxn],d[maxn];
typedef struct node{
int date;
struct node*left;
struct node*right;
}Node;
typedef struct{
Node *root;
}Tree;
void insert(Tree* tree, int value){
Node* node = (Node *)malloc(sizeof(Node));
node->date = value;
node->left = NULL;
node->right = NULL;
if(tree->root == NULL){
tree->root = node;
}else{
Node* temp = tree->root;
while(temp != NULL){
if(value < temp->date){
if(temp->left == NULL){
temp -> left = node;
return ;
}else{
temp = temp->left;
}
}else{
if(temp->right == NULL){
temp -> right = node;
return ;
}else{
temp = temp->right;
}
}
}
}
}
void insert2(Tree *tree, int value){
Node *node = (Node*)malloc(sizeof(Node));
node->date = value;
node->left = NULL;
node->right = NULL;
if(tree->root == NULL){
tree->root = node;
}else{
Node *temp = tree->root;
while(temp!=NULL){
if(value < temp->date){
if(temp->right == NULL){
temp->right = node;
return ;
}else{
temp = temp->right;
}
}else{
if(temp->left == NULL){
temp->left = node;
return ;
}else{
temp = temp->left;
}
}
}
}
}
int ans = 0;
void preorder(Node *node){
if(node != NULL){
a[ans] = node->date;
ans++;
//printf("%d ",node->date);
preorder(node->left);
preorder(node->right);
}
}
int res = 0;
void preorder2(Node *node){
if(node != NULL){
b[res] = node->date;
res++;
//printf("%d ",node->date);
preorder2(node->left);
preorder2(node->right);
}
}
int res2 = 0;
void postorder(Node *node){
if(node != NULL){
postorder(node->left);
postorder(node->right);
d[res2] = node->date;
res2++;
}
}
int main(){
scanf("%d",&n);
int q[maxn];
Tree tree;
tree.root = NULL;
Tree tree2;
tree2.root = NULL;
for(int i = 0; i < n; i++){
scanf("%d",&q[i]);
insert(&tree,ot);
preorder2(tree2.root);
int flag q[i]);
insert2(&tree2,q[i]);
}
preorder(tree.ro= 0;
for(int i = 0; i < n; i++){
if(a[i] != q[i]){
flag = 1;
break;
}
}
int flag2 = 0;
for(int i = 0; i < n; i++){
if(b[i] != q[i]){
flag2 = 1;
break;
}
}
if(!flag2){
printf("YES\n");
postorder(tree2.root);
for(int i = 0; i < n; i++){
if(i == n-1){
printf("%d\n",d[i]);
}else{
printf("%d ", d[i]);
}
}
}else{
if(!flag){
printf("YES\n");
postorder(tree.root);
for(int i = 0; i < n; i++){
if(i == n-1){
printf("%d\n",d[i]);
}else{
printf("%d ", d[i]);
}
}
}else{
printf("NO\n");
}
}
return 0;
}
这应该是比较笨的办法,不过自己主动做出来了一道,数据结构的题还好是很开心。坚持吧,骚年;