MATLAB_第二篇神经网络学习(1)_工具箱学习

本文介绍了如何使用MATLAB中的神经网络工具箱GUI来创建神经网络模型,包括输入命令打开工具箱、导入数据、确定隐层神经元数量、选择训练算法等步骤。并提供了一系列与神经网络相关的函数及功能介绍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在网上,发现可以通过神经网络工具箱这个GUI界面来创建神经网络,其一般的操作步骤如下:

1:在输入命令里面输入nntool命令,或者在应用程序这个选项下找到Netrual Net Fitting 这个应用程序,点击打开,就能看见如下界面

2:输入数据和输出数据的导入(在本文中选取了matlab自带的案例数据)


3:随机选择三种类型的数据所占的样本量的比例,一般选取默认即可
 


4:隐层神经元的确定
                                                                              


5:训练算法的选取,一般是选择默认即可,选择完成后点击<train>按钮即可运行程序




6:根据得到的结果,一般是MSE的值越小,R值越接近1,其训练的效果比较,并第二张图给出了神经网络的各参数的设置以及其最终的结果,其拟合图R越接近1,模型拟合的更好








最终的结果图

7:如果所得到的模型不能满足你的需求,则需重复上述的步骤直至能够得到你想要的精确度

8:将最终的得到的各种数据以及其拟合值进行保存,然后查看,就可以得到所要的拟合值


最后参考了网上和MATLAB的帮助,给出了一些与神经网络相关的函数,希望能够帮助大家。。
 图形用户界面功能。 
    nnstart - 神经网络启动GUI 
    nctool - 神经网络分类工具 
    nftool - 神经网络的拟合工具 
    nntraintool - 神经网络的训练工具 
    nprtool - 神经网络模式识别工具 
    ntstool - NFTool神经网络时间序列的工具 
    nntool - 神经网络工具箱的图形用户界面。 
    查看 - 查看一个神经网络。 
  
  网络的建立功能。 
    cascadeforwardnet - 串级,前馈神经网络。 
    competlayer - 竞争神经层。 
    distdelaynet - 分布时滞的神经网络。 
    elmannet - Elman神经网络。 
    feedforwardnet - 前馈神经网络。 
    fitnet - 函数拟合神经网络。 
    layrecnet - 分层递归神经网络。 
    linearlayer - 线性神经层。 
    lvqnet - 学习矢量量化(LVQ)神经网络。 
    narnet - 非线性自结合的时间序列网络。 
    narxnet - 非线性自结合的时间序列与外部输入网络。 
    newgrnn - 设计一个广义回归神经网络。 
    newhop - 建立经常性的Hopfield网络。 
    newlind - 设计一个线性层。 
    newpnn - 设计概率神经网络。 
    newrb - 径向基网络设计。 
    newrbe - 设计一个确切的径向基网络。 
    patternnet - 神经网络模式识别。 
    感知 - 感知。 
    selforgmap - 自组织特征映射。 
    timedelaynet - 时滞神经网络。 
  
  利用网络。 
    网络 - 创建一个自定义神经网络。 
    SIM卡 - 模拟一个神经网络。 
    初始化 - 初始化一个神经网络。 
    适应 - 允许一个神经网络来适应。 
    火车 - 火车的神经网络。 
    DISP键 - 显示一个神经网络的属性。 
    显示 - 显示的名称和神经网络属性 
    adddelay - 添加延迟神经网络的反应。 
    closeloop - 神经网络的开放反馈转换到关闭反馈回路。 
    formwb - 表格偏见和成单个向量的权重。 
    getwb - 将它作为一个单一向量中的所有网络权值和偏差。 
    noloop - 删除神经网络的开放和关闭反馈回路。 
    开环 - 转换神经网络反馈,打开封闭的反馈循环。 
    removedelay - 删除延迟神经网络的反应。 
    separatewb - 独立的偏见和重量/偏置向量的权重。 
    setwb - 将所有与单个矢量网络权值和偏差。 
  
  Simulink的支持。 
    gensim - 生成Simulink模块来模拟神经网络。 
    setsiminit - 集神经网络的Simulink模块的初始条件 
    getsiminit - 获取神经网络Simulink模块的初始条件 
    神经元 - 神经网络Simulink的模块库。 
  
  培训职能。 
    trainb - 批具有重量与偏见学习规则的培训。 
    trainbfg - 的BFGS拟牛顿倒传递。 
    trainbr - 贝叶斯规则的BP算法。 
    trainbu - 与重量与偏见一批无监督学习规则的培训。 
    trainbuwb - 与体重无监督学习规则与偏见一批培训。 
    trainc - 循环顺序重量/偏见的培训。 
    traincgb - 共轭鲍威尔比尔重新启动梯度反向传播。 
    traincgf - 共轭弗莱彻-里夫斯更新梯度反向传播。 
    traincgp - 共轭波拉克- Ribiere更新梯度反向传播。 
    traingd - 梯度下降反向传播。 
    traingda - 具有自适应LR的反向传播梯度下降。 
    traingdm - 与动量梯度下降。 
    traingdx - 梯度下降瓦特/惯性与自适应LR的反向传播。 
    trainlm - 采用Levenberg -马奎德倒传递。 
    trainoss - 一步割线倒传递。 
    trainr - 随机重量/偏见的培训。 
    trainrp - RPROP反向传播。 
    trainru - 无监督随机重量/偏见的培训。 
    火车 - 顺序重量/偏见的培训。 
    trainscg - 规模化共轭梯度BP算法。 
  
  绘图功能。 
    plotconfusion - 图分类混淆矩阵。 
    ploterrcorr - 误差自相关时间序列图。 
    ploterrhist - 绘制误差直方图。 
    plotfit - 绘图功能适合。 
    plotinerrcorr - 图输入错误的时间序列的互相关。 
    plotperform - 小区网络性能。 
    plotregression - 线性回归情节。 
    plotresponse - 动态网络图的时间序列响应。 
    plotroc - 绘制受试者工作特征。 
    plotsomhits - 小区自组织图来样打。 
    plotsomnc - 小区自组织映射邻居的连接。 
    plotsomnd - 小区自组织映射邻居的距离。 
    plotsomplanes - 小区自组织映射重量的飞机。 
    plotsompos - 小区自组织映射重量立场。 
    plotsomtop - 小区自组织映射的拓扑结构。 
    plottrainstate - 情节训练状态值。 
    plotwb - 图寒春重量和偏差值图。 
  
  列出其他神经网络实现的功能。 
    nnadapt - 适应职能。 
    nnderivati​​ve - 衍生功能。 
    nndistance - 距离函数。 
    nndivision - 除功能。 
    nninitlayer - 初始化层功能。 
    nninitnetwork - 初始化网络功能。 
    nninitweight - 初始化权函数。 
    nnlearn - 学习功能。 
    nnnetinput - 净输入功能。 
    nnperformance - 性能的功能。 
    nnprocess - 处理功能。 
    nnsearch - 线搜索功能。 
    nntopology - 拓扑结构的功能。 
    nntransfer - 传递函数。 
    nnweight - 重量的功能。 
 nndemos - 神经网络工具箱的示威。 
    nndatasets - 神经网络工具箱的数据集。 
    nntextdemos - 神经网络设计教科书的示威。 
    nntextbook - 神经网络设计教科书的资讯。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值