目录
1. 时序滞后阶数
时序的滞后阶数即向后追溯的观测值的数量。0阶滞后项(Lag 0)代表没有移位的时序,一阶滞后(Lag1)代表时序向左移动一位,二阶滞后(Lag2)代表时序向左移动两位,以此类推。时序可以通过lag(ts,k)函数变成k阶滞后,其中ts指代目标序列,k为滞后项阶数。
2. ARMA 模型
自回归滑动平均模型(Autoregressive moving average model,简称:ARMA模型)。是研究时间序列的重要方法,由自回归模型(AutoRegressive AR)与移动平均模型(Moving Averages MA)为基础“混合”构成。
2.1. p阶自回归模型
序列中的每一个值都可以用它之前p个值的线性组合来表示:
(1)
其中是时序中的任一观测值,
是序列中均值,
是权重,
是随机扰动。
2.2. q阶移动平均模型
时序中的每个值都可以用之前的个残差的线性组合来表示,即:
(2)
此时,序列中的每个观测值用过去的个观测值和
个残差的线性组合来表示。
2.3 ARIMA(p,d,q)模型
ARIMA(p,d,q)模型意味着时序被差分了d次,且序列中的每个观测值都是用过去的p个观测值和q个残差的线性组合表示的。预测是“无误差的”或完整(integrated)的,来实现最终的预测。
3. 建立ARIMA模型的步骤
- 确保时序是平稳的
- 找到一个(或几个)合理的模型(即选定可能的p值和q值)
- 拟合模型
- 从统计假设和预测准确性等角度评估模型
- 预测