数据清洗_第一篇 缺失值处理(4)_自回归滑动平均模型 ARMA

目录

1. 时序滞后阶数

2. ARMA 模型

3. 建立ARIMA模型的步骤


1. 时序滞后阶数

时序的滞后阶数即向后追溯的观测值的数量。0阶滞后项(Lag 0)代表没有移位的时序,一阶滞后(Lag1)代表时序向左移动一位,二阶滞后(Lag2)代表时序向左移动两位,以此类推。时序可以通过lag(ts,k)函数变成k阶滞后,其中ts指代目标序列,k为滞后项阶数。

2. ARMA 模型

自回归滑动平均模型(Autoregressive moving average model,简称:ARMA模型)。是研究时间序列的重要方法,由自回归模型(AutoRegressive AR)与移动平均模型(Moving Averages MA)为基础“混合”构成。

2.1.  p阶自回归模型

序列中的每一个值都可以用它之前p个值的线性组合来表示:

AR(p):Y_{t}=\mu +\beta _{1}Y_{t-1}+\beta _{2}Y_{t-2}+\cdots +\beta _{p}Y_{t-p}+\varepsilon _{t}     (1)

其中Y_{t}是时序中的任一观测值,\mu是序列中均值,\beta是权重,\varepsilon _{t}是随机扰动。

2.2.  q阶移动平均模型

时序中的每个值都可以用之前的q个残差的线性组合来表示,即:

MA(q):Y_{t}=\mu -\theta _{1}\varepsilon _{t-1}-\theta _{2}\varepsilon _{t-2}-\cdots -\theta _{q}\varepsilon _{t-q}+\varepsilon _{t}     (2)

此时,序列中的每个观测值用过去的p个观测值和q个残差的线性组合来表示。

2.3  ARIMA(p,d,q)模型

ARIMA(p,d,q)模型意味着时序被差分了d次,且序列中的每个观测值都是用过去的p个观测值和q个残差的线性组合表示的。预测是“无误差的”或完整(integrated)的,来实现最终的预测。

3. 建立ARIMA模型的步骤

  • 确保时序是平稳的
  • 找到一个(或几个)合理的模型(即选定可能的p值和q值)
  • 拟合模型
  • 从统计假设和预测准确性等角度评估模型
  • 预测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值