神经网络_第一篇 种类(2)_NARX

本文介绍了NARX神经网络的概念、结构模型及其特点。NARX神经网络是一种基于带外源输入的非线性自回归模型,适用于时间序列预测。它通过加入延时和反馈机制增强对历史数据的记忆能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. NARX概念

NARX神经网络(Based on the nonlinear autoregressive with exogeneous inputs neural network 基于带外源输入的非线性自回归神经网络)。NARX是一种用于描述非线性离散系统的模型。表示为:
在这里插入图片描述
式中:u(t),y(t)分别是该网络在t时刻的输入和输出;Du为输入时延的最大阶数;Dy为输出时延的最大阶数;故u(t-Du),…,u(t-1)为相对于 t 时刻的历史输入;y(t-Dy),…,y(t-1)为相对于 t 时刻的历史输出;f 为网络拟合得到的非线性函数。

2. NARX神经网络结构模型

在这里插入图片描述
NARX神经网络结构包含输入层、隐含层和输出层。输入层节点数根据输入值个数设定,输出层节点数根据预测值个数设定。通过合理设定隐含层层数和节点数,构建NARX神经网络。NARX神经网络与反向传播神经网络的训练方法类似。

3. NARX神经网络的特点

  • NARX神经网络加入了延时和反馈机制,因此增强了对历史数据的记忆能力,是一种动态神经网络。
  • NARX适用于时间序列预测,并被应用于解决多种领域的非线性序列预测问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值