题目描述:判断一个非负整数是否为两个整数的平方和。

给定非负整数c,判断是否存在整数a和b,使得a²+b²=c。示例表明,存在有效解决方案时返回true,反之返回false。解决方案采用双指针策略,初始右指针为sqrt(c),通过不断调整左右指针找到平方和为目标值的情况。算法的时间复杂度为O(sqrt(target)),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c

示例 1:

输入:c = 5
输出:true
解释:1 * 1 + 2 * 2 = 5
示例 2:

输入:c = 3
输出:false

题目链接:点我跳转leetcode

解题方案:
可以使用双指针得到两个数,使其平方和为 target。

本题的关键是右指针的初始化,实现剪枝,从而降低时间复杂度。设右指针为 x,左指针固定为 0,为了使 02 + x2 的值尽可能接近 target,我们可以将 x 取为 sqrt(target)。

因为最多只需要遍历一次 0~sqrt(target),所以时间复杂度为 O(sqrt(target))。又因为只使用了两个额外的变量,因此空间复杂度为 O(1)。


class Solution {
   
  public boolean 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值