L1, L2和Elastic Net正则化的实现及使用(采用PyTorch框架)

在机器学习中,L1正则化、L2正则化和Elastic Net正则化是用来避免过拟合的技术,它们通过在损失函数中添加一个惩罚项来实现。

正则化介绍
L1 正则化(Lasso回归):
L1 正则化通过向损失函数添加参数的绝对值的和来实施惩罚,公式可以表示为:

在这里插入图片描述

其中 L0 是原始的损失函数,λ 是正则化强度,wi是模型参数。

L1 正则化的特点是它可以产生稀疏模型,即许多模型参数会被设置为零。这种特性使得L1正则化不仅可以防止过拟合,还可以进行特征选择。

L2 正则化(Ridge回归):
L2 正则化通过添加参数的平方和来施加惩罚,公式为:

图片

λ 控制着正则化的强度。

L2 正则化倾向于让参数值趋近于零但不会完全为零,这有助于处理参数值过大的问题,从而减少模型在训练数据上的过拟合。

Elastic Net 正则化:
Elastic Net 正则化是L1和L2正则化的组合,它在损失函数中同时添加了L1和L2惩罚项,公式为:

图片

这种方法结合了L1和L2的优点,既可以产生稀疏模型,也可以平滑模型参数。

在实际应用中,Elastic Net特别适合于那些特征数量多于样本数量,或者特征之间高度相关的情况。

在sklearn中,我们可以使用内置的回归函数来实现

Lasso回归是应用L1正则化的典型模型。它可以通过Lasso类实现;Ridge回归使用L2正则化。它可以通过Ridge类来实现;Elastic Net回归结合了L1和L2正则化。它通过ElasticNet类实现

Pytorch代码实现
但是这些都是最简单的线性回归的扩展,通过上面的介绍,我们看到这些正则化的方式都是通过修改模型本身的权重来实现的,所以我们可以在MLP上也使用这些正则化的方法,下面我们将使用Pytorch来演示这个步骤

首先我们看下L1

 import os
 import torch
 from torch import nn
 from torchvision.datasets import MNIST
 from torch.utils.data import DataLoader
 from torchvision import transforms
 
 class MLP(nn.Module):
   '''
    Multilayer Perceptron.
  '''
   def __init__(self):
     super().__init__()
     self.layers = nn.Sequential(
       nn.Flatten(),
       nn.Linear(28 * 28 * 1, 64),
       nn.ReLU(),
       nn.Linear(64, 32),
       nn.ReLU(),
       nn.Linear(32, 10)
    )
 
 
   def forward(self, x):
     '''Forward pass'''
     return self.layers(x)
   
   def compute_l1_loss(self, w):
       return torch.abs(w).sum()
   
   
 if __name__ == '__main__':
   
   # Set fixed random number seed
   torch.manual_seed(42)
   
   # Prepare CIFAR-10 dataset
   dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
   trainloader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=1)
   
   # Initialize the MLP
   mlp = MLP()
   
   # Define the loss function and optimizer
   loss_function = nn.CrossEntropyLoss()
   optimizer = torch.optim.Adam(mlp.parameters(), lr=1e-4)
   
   # Run the training loop
   for epoch in range(0, 5): # 5 epochs at maximum
     
     # Print epoch
     print(f'Starting epoch {epoch+1}')
     
     # Iterate over the DataLoader for training data
     for i, data in enumerate(trainloader, 0):
       
       # Get inputs
       inputs, targets = data
       
       # Zero the gradients
       optimizer.zero_grad()
       
       # Perform forward pass
       outputs = mlp(inputs)
       
       # Compute loss
       loss = loss_function(outputs, targets)
       
       # Compute L1 loss component
       l1_weight = 1.0
       l1_parameters = []
       for parameter in mlp.parameters():
           l1_parameters.append(parameter.view(-1))
       l1 = l1_weight * mlp.compute_l1_loss(torch.cat(l1_parameters))
       
       # Add L1 loss component
       loss += l1
       
       # Perform backward pass
       loss.backward()
       
       # Perform optimization
       optimizer.step()
       
       # Print statistics
       minibatch_loss = loss.item()
       if i % 500 == 499:
           print('Loss after mini-batch %5d: %.5f (of which %.5f L1 loss)' %
                (i + 1, minibatch_loss, l1))
           current_loss = 0.0
 
   # Process is complete.
   print('Training process has finished.')

我们在本身的一个简单的MLP中增加了一个compute_l1_loss方法,在我们计算完基本的损失后,还会计算模型参数的L1 损失,然后与基本损失相加,最后使用这个最终损失来进行反向传播。

L2正则化也很容易。我们不取权重值的绝对值,而是取它们的平方。

 import os
 import torch
 from torch import nn
 from torchvision.datasets import MNIST
 from torch.utils.data import DataLoader
 from torchvision import transforms
 
 class MLP(nn.Module):
   '''
    Multilayer Perceptron.
  '''
   def __init__(self):
     super().__init__()
     self.layers = nn.Sequential(
       nn.Flatten(),
       nn.Linear(28 * 28 * 1, 64),
       nn.ReLU(),
       nn.Linear(64, 32),
       nn.ReLU(),
       nn.Linear(32, 10)
    )
 
 
   def forward(self, x):
     '''Forward pass'''
     return self.layers(x)
   
   def compute_l2_loss(self, w):
       return torch.square(w).sum()
   
   
 if __name__ == '__main__':
   
   # Set fixed random number seed
   torch.manual_seed(42)
   
   # Prepare CIFAR-10 dataset
   dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
   trainloader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=1)
   
   # Initialize the MLP
   mlp = MLP()
   
   # Define the loss function and optimizer
   loss_function = nn.CrossEntropyLoss()
   optimizer = torch.optim.Adam(mlp.parameters(), lr=1e-4)
   
   # Run the training loop
   for epoch in range(0, 5): # 5 epochs at maximum
     
     # Print epoch
     print(f'Starting epoch {epoch+1}')
     
     # Iterate over the DataLoader for training data
     for i, data in enumerate(trainloader, 0):
       
       # Get inputs
       inputs, targets = data
       
       # Zero the gradients
       optimizer.zero_grad()
       
       # Perform forward pass
       outputs = mlp(inputs)
       
       # Compute loss
       loss = loss_function(outputs, targets)
       
       # Compute l2 loss component
       l2_weight = 1.0
       l2_parameters = []
       for parameter in mlp.parameters():
           l2_parameters.append(parameter.view(-1))
       l2 = l2_weight * mlp.compute_l2_loss(torch.cat(l2_parameters))
       
       # Add l2 loss component
       loss += l2
       
       # Perform backward pass
       loss.backward()
       
       # Perform optimization
       optimizer.step()
       
       # Print statistics
       minibatch_loss = loss.item()
       if i % 500 == 499:
           print('Loss after mini-batch %5d: %.5f (of which %.5f l2 loss)' %
                (i + 1, minibatch_loss, l2))
           current_loss = 0.0
 
   # Process is complete.
   print('Training process has finished.')

最终的计算过程和L1正则化一样,只不过是计算附加损失的方法不同。

对于L2的正则化Pytorch的Adam优化器有一个官方的参数,叫做权重衰减 weight_decay

 optimizer = torch.optim.Adam(mlp.parameters(), lr=1e-4, weight_decay=1.0)

你可能不知道他和L2的关系,但是你一定用到过,所以我们这样一解释就非常明白了对吧

最后就是Elastic Net (L1 + L2)

 class MLP(nn.Module):
   '''
    Multilayer Perceptron.
  '''
   def __init__(self):
     super().__init__()
     self.layers = nn.Sequential(
       nn.Flatten(),
       nn.Linear(28 * 28 * 1, 64),
       nn.ReLU(),
       nn.Linear(64, 32),
       nn.ReLU(),
       nn.Linear(32, 10)
    )
 
 
   def forward(self, x):
     '''Forward pass'''
     return self.layers(x)
   
   def compute_l1_loss(self, w):
       return torch.abs(w).sum()
   
   def compute_l2_loss(self, w):
       return torch.square(w).sum()
   
   
 if __name__ == '__main__':
   
   # Set fixed random number seed
   torch.manual_seed(42)
   
   # Prepare CIFAR-10 dataset
   dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
   trainloader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=1)
   
   # Initialize the MLP
   mlp = MLP()
   
   # Define the loss function and optimizer
   loss_function = nn.CrossEntropyLoss()
   optimizer = torch.optim.Adam(mlp.parameters(), lr=1e-4)
   
   # Run the training loop
   for epoch in range(0, 5): # 5 epochs at maximum
     
     # Print epoch
     print(f'Starting epoch {epoch+1}')
     
     # Iterate over the DataLoader for training data
     for i, data in enumerate(trainloader, 0):
       
       # Get inputs
       inputs, targets = data
       
       # Zero the gradients
       optimizer.zero_grad()
       
       # Perform forward pass
       outputs = mlp(inputs)
       
       # Compute loss
       loss = loss_function(outputs, targets)
       
       # Specify L1 and L2 weights
       l1_weight = 0.3
       l2_weight = 0.7
       
       # Compute L1 and L2 loss component
       parameters = []
       for parameter in mlp.parameters():
           parameters.append(parameter.view(-1))
       l1 = l1_weight * mlp.compute_l1_loss(torch.cat(parameters))
       l2 = l2_weight * mlp.compute_l2_loss(torch.cat(parameters))
       
       # Add L1 and L2 loss components
       loss += l1
       loss += l2
       
       # Perform backward pass
       loss.backward()
       
       # Perform optimization
       optimizer.step()
       
       # Print statistics
       minibatch_loss = loss.item()
       if i % 500 == 499:
           print('Loss after mini-batch %5d: %.5f (of which %.5f L1 loss; %0.5f L2 loss)' %
                (i + 1, minibatch_loss, l1, l2))
           current_loss = 0.0
 
   # Process is complete.
   print('Training process has finished.')

也非常的简单,并且我们可以设置两个权重,就是L1和L2的占比,使用不同的加权,可以获得更好的结果。

总结
这篇文章是要是为了介绍L1, L2和Elastic Net (L1+L2)正则化在理论上是如何工作的。并且我们也在PyTorch中使用了L1, L2和Elastic Net (L1+L2)正则化。这三种正则化方法在不同的情况和数据集上有不同的效果,选择哪种正则化方法取决于具体的应用场景和数据特性。

  • 15
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕业小助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值