CF618G(利用浮点数精度+矩乘优化DP)

这题真的太神辣,%了一发题解,原来还能这么搞QWQ

\(A_{i,j}\)表示不加任何限制时,第\(i\)个格子会出现权值为\(j\)的史莱姆的概率,则有:

\[A_{i,j}=A_{i,j-1}*A_{i-1,j-1}\]

再设\(B_{i,j}\)表示第一个放置的史莱姆权值为\(2\)时(之后放置的史莱姆不管),第\(i\)个格子会出现权值为\(j\)的史莱姆的概率,则有:

\[B_{i,j}=B_{i,j-1}*A_{i-1,j-1}\]

好的现在就可以求第\(i\)个格子刚好会出现权值为\(j\)的史莱姆的概率,分别设它们为\(A'_{i,j}\)\(B'_{i,j}\),显然有:

\[A'_{i,j}=A_{i,j}*(1-A_{i-1,j})\]

\[B'_{i,j}=B_{i,j}*(1-A_{i-1,j})\]

下面就是快乐\(Dp\)的时间了:设\(F_{i,j}\)表示右数第\(i\)个数为\(j\)时,右数第\(1\)~\(i\)个格子上的史莱姆权值和,根据期望\(Dp\)的基本套路,我们有:

\[ F_{i,j}=\left\{ \begin{aligned} \frac{ \sum_{k=1}^{j-1} F_{i-1,k}*A'_{i-1,k} }{ \sum_{k=1}^{j-1}A'_{i-1,k} }+j&&(j>1) \\ \\\frac{ \sum_{k=2}^{i+1} F_{i-1,k}*B'_{i-1,k} }{ \sum_{k=2}^{i+1}B'_{i-1,k} }+1&&(j=1) \end{aligned} \right.\]

最终答案为:

\[Ans= \sum\limits_{j=1}^{n+1} A_{n,j}*F_{n,j} \]

于是 丧心病狂的 出题人把\(n\)出到了\(1e9\),但是又很良心地保留12位小数,似乎可以利用一下浮点数精度?

观察\(A\)\(B\)的递推式,发现它是以平方级别增长的。引用下官方题解:当\(j=50\)时, \(A_{i,j}\approx 10^{-300}\).

所以当\(j\geq 50\)时,可以认为\(A_{i,j}=A_{i,j-1}\),同理,当\(i\geq 50\)时,也有\(A_{i,j}=A_{i-1,j}\)

所以就处理出来所有\(1\leq i,j \leq n\)\(A'_{i,j},B'_{i,j},F_{i,j}\),剩下的\(F_{i,j}\)转移系数是一样的,直接矩乘优化即可

代码:

#include <bits/stdc++.h>
#define lb double
using namespace std;

lb A[55][55],B[55][55],_A[55][55],_B[55][55],F[55][55];
lb E[55][55],Mar[55][55],tmp[55][55];

void init(int k){
    int i,j;
    A[1][1]=(lb)k*1e-9,B[1][2]=(1e9-k)*1e-9,A[1][2]=B[1][2];
    for(i=2;i<=50;++i){
        A[i][1]=A[1][1],B[i][2]=B[1][2],A[i][2]=B[i][2]+A[1][1]*A[1][1];
        for(j=3;j<=50;++j){
            A[i][j]=A[i-1][j-1]*A[i][j-1];
            B[i][j]=B[i][j-1]*A[i-1][j-1];
        }
    }
    
    _A[1][1]=A[1][1],_A[1][2]=A[1][2],_B[1][2]=B[1][2]; 
    for(i=2;i<=50;++i){
        _A[i][1]=A[i][1]*(1.00-A[i-1][1]),_B[i][1]=0;
        for(j=2;j<=50;++j){
            _A[i][j]=A[i][j]*(1.00-A[i-1][j]);
            _B[i][j]=B[i][j]*(1.00-A[i-1][j]);
        }       
    }       
    
    for(i=1;i<=50;++i) F[1][i]=i*1.00;
    for(i=2;i<=50;++i){
        lb x=0,y=0;
        for(j=2;j<=50;++j)
            x+=F[i-1][j]*_B[i-1][j],y+=_B[i-1][j];
        F[i][1]=x/y+1.00;
        for(j=2;j<=50;++j){
            x=0,y=0;
            for(k=1;k<j;++k)
                x+=F[i-1][k]*_A[i-1][k],y+=_A[i-1][k];
            F[i][j]=x/y+j*1.00;
        }
    }

    E[0][0]=E[0][1]=1;
    for(i=2;i<=50;++i){
        lb y=0;Mar[0][i]=F[50][i];
        for(j=1;j<i;++j) y+=_A[50][j];
        for(j=1;j<i;++j) E[j][i]=_A[50][j]/y;
        E[0][i]=i;
    }
    for(i=2;i<=50;++i){
        lb y=0;
        for(j=2;j<=50;++j) y+=_B[50][j];
        E[i][1]=_B[50][i]/y;
    } 
    Mar[0][0]=1;
    for(i=1;i<=50;++i) Mar[0][i]=F[50][i];
}

void mul(lb a[][55],lb b[][55]){
    memset(tmp,0,sizeof(tmp));
    for(int i=0;i<=50;++i)
        for(int k=0;k<=50;++k)
            for(int j=0;j<=50;++j)
                tmp[i][j]+=a[i][k]*b[k][j];
    for(int i=0;i<=50;++i)
        for(int j=0;j<=50;++j) a[i][j]=tmp[i][j];
}

int main(){
    int n,k,i;
    lb ans=0;
    scanf("%d%d",&n,&k);
    init(k);
    if(n<=50){
        for(i=1;i<=50;++i) ans+=F[n][i]*_A[n][i];       
    } else{
        for(i=n-50;i;i>>=1){
            if(i&1) mul(Mar,E);
            mul(E,E);
        }
        for(i=1;i<=50;++i) ans+=Mar[0][i]*_A[50][i];        
    }
    printf("%.12f",ans);
}

转载于:https://www.cnblogs.com/PsychicBoom/p/10560249.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值