自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 PikPak磁力网盘

  PikPak最新版是一款专为安卓用户打造的手机网盘软件,它具有超大储存空间、极速上传下载、云播等功能,有了它,用户可以快速保存各种文件,也可以播放各种影视。  1、云播  PikPak 可以直接播放未下载到手机里的视频,节省用户大量的时间和手机空间,速度还不错,可以直接播放原始画质,也有倍速功能(0.5x~2.0x),支持在线字幕、自动挂载文件夹中同名字幕,以及加载本地字幕,还可以单集循环!  2、Telegram 机器人  当然最方便的,还是连接了 Telegram 机器人之后,直接向机器人转

2022-03-21 21:19:24 8034

原创 pytorch实现mnist数据集分类

1.数据准备  pytorch框架内置的torchvision中的datasets类中有一些常见的数据集。本文采用随机梯度下降的算法来训练数据,数据集构造如下所示: # 将数据集转换成张量并且归一化 transform = transforms.Compose({ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))} ) # 下载数据集,download= True表示从网络下载,本文已经下载好了这

2022-03-20 12:20:35 2544 2

原创 续驶里程的研究(滑动窗口版)

1.方法介绍  在滑动窗口中,元组被分组在一个窗口内,该窗口根据指定的步长在数据流中滑动。本文采用的是长度为多个放电周期且滑动间隔为一个放电周期的基于时间的滑动窗口。理论来说,数据集中每天有3-6个放电周期。当滑动窗口越大时,可能同时包含几天的数据。因此滑动窗口越大,时间跨度越大。2.实验过程2.1方法1  获取所有放电周期的索引,并且将最终结果放入一个列表中,构成一个二维列表。利用列表的索引结构,模仿滑动窗口滑动的过程(滑动窗口的步长为一个放电周期)。不断的调整滑动窗口的大小,观测滑动窗口的最佳

2021-10-31 10:20:17 1052 1

原创 纯电动公交车续驶里程估计

1.思路  输入是SOC差、总电压(能耗、残差等变量暂时不考虑),输出是这段过程的行驶里程  SOC差值:SOC从100下降到50,所以输入50  总电压:SOC位于100时的总电压  输出:SOC从100下降到50走的距离  存在问题:①所给的数据集中所有放电过程都是SOC从100下降到50~70的这种状态,模型只能对这个部分进行训练验证。②如果我们输入的是SOC差为70(从100下降到安全状态30),也能够作为续驶里程,只不过存在准确性的问题,因为无法验证。2.时间窗为一天  r2为90

2021-10-22 18:13:58 804

原创 基于机器学习算法对电动汽车续驶里程进行估计

1.概论  本文主要通过采集大量的数据,通过对数据进行处理分析,发现SOC和总电压是影响续驶里程的主要原因。从线性关系出发,建立了SOC、总电压和续驶里程的多元线性回归。为了提高模型的准确性,将线性模型中计算得到的残差作为一个新的特征,KNN回归预测模型具有更高的精度,弥补了多元线性回归模型的不足。2.多元线性模型2.1模型介绍  在回归模型y=a+bx+c 中,假定c的期望值为0,方差相等且服从正态分布的一个随机变量。但是,若关于c的假定不成立,此时所做的检验以及估计和预测也许站不住脚。确定有关c

2021-10-15 17:10:07 2587 1

原创 基于机器学习算法对电动汽车能耗估计

1.车辆剩余续驶里程的定义  定义:电动汽车行驶过程中,从电池当前状态当完全放电状态,车辆能够行驶的距离。车辆剩余续驶里程主要由剩余可用能量和汽车未来能耗两个因素决定。在前面的研究中,我们可用利用安培积分法、速度对时间积分、KNN回归预测等方法准确预测出SOC,结合电压就可以估算出电池可用能量。车辆自身质量、结构及其零件的性能、电机效率、电池内阻消耗、胎压、造型这些因素都会对车辆的行驶阻力造成影响,继而影响车辆的行驶能耗。另外不同的驾驶员对车辆内部的需求不同,其中空调的使用对电动汽车的能耗有着较为明显的影

2021-09-29 16:38:59 4435 5

原创 基于机器学习的SOC预测

1.静止状态  由前面的分析可以知道静止状态下SOC与总电压、最高电池值、最小电池值、最大温度、最小温度相关性较高,采用knn算法对SOC进行预测回归。1.1数据处理  读取文件# 读取数据csv_name = './data/static.csv'with open(csv_name) as csvfile: data = pd.read_csv(csvfile, header=1) # header=1默然不读取表头  删除缺失值# 输出缺失值data.dropna(inp

2021-09-01 09:02:26 4524 7

原创 研究影响 SOC 值的因素

1研究背景  由于新能源汽车的高速发展,对电池的相关研究越发重 要。然而电池 SOC 不能直接进行测量,只能通过电池的电压、电流、温度等参数来进行估算,而这些参数还会受到电池老化、环境温度变化及汽车行驶状态等多种不确定因素的影响,因此准确的 SOC 估计已成为电动汽车发展中急需解决的问题。2研究动机  为了研究影响 SOC 值的因素,对数据集进行一定的分析后,分别针对车辆处于静止、运动、充电三种状态进行了深入的研究。3数据分析3.1数据展示特征说明time数据时间ve

2021-08-24 12:31:37 4658 3

原创 ahocorasick安装成功,但无法使用

将python3.7版本更换为python3.6,通过命令pip install pyahocorasick即可,importahocorasick就能运行成功。

2021-04-07 16:38:17 456 1

原创 Linux中信号(带参信号)

加粗样式Linux中信号(带参信号)## 标题要求创建四个进程A->B->C->DA—>发送SIGUSR1信号并携带一个整型数据2001,B进程收到数据后对2001加1,在通过SIGUSR2信号发送给进程C,同样进程C收到SIGUSR2信号后,在把数据2002再累加1,通过发送SIGRTMIN发送给进程DD收到信号后,在发送SIGUSR2信号给进程A.最后进程A在信号处理函数中打印初最后的整型数组。(要求A进程在执行SIGUSR1信号处理函数的时候屏蔽SIGUSR2信号)#in

2021-04-07 16:32:24 577 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除