这是一个全排列问题(全排列就是求一组数据的所有排列,例如 abc 的全排列为 abc、acb、bac、bca、cab、cba)。
首先用数组 maze[] 的下标表示图中的十个方格(例如 maze[0] 代表第一个方格,如下图)。
根据题意,abs(maze[0]-maze[1])!=1, abs(maze[0]-maze[3])!=1, abs(maze[0]-maze[4])!=1…(大家都懂)。
其实,本题的重点是如何快速的求出 0 到 9 的全排列,这里需要用到 C++ 中 next_permutation 函数,这里着重讲一下这个函数。
next_permutation 实际上是求下一个排列,首先我们必须了解什么是“下一个”排列,三个字符序列 {a,b,c} 按照字典序排升序他们一共有下面这几种排列方式:
abc
acb
bac
bca
cab
cba
显而易见,排列 acb 的下一个排列就是 bac,上一个排列组合就是 abc。
C++ 中还有 prev_permutation 函数,这是求上一个排列,意思和 next_permutation 大同小异。
#include <algorithm>
#include <iostream>
using namespace std;
int main() {
int maze[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
int ans = 0;
do {
if (abs(maze[0] - maze[1]) != 1 && abs(maze[0] - maze[3]) != 1 &&
abs(maze[0] - maze[4]) != 1 && abs(maze[0] - maze[5]) != 1)
if (abs(maze[1] - maze[2]) != 1 && abs(maze[1] - maze[4]) != 1 &&
abs(maze[1] - maze[5]) != 1 && abs(maze[1] - maze[6]) != 1)
if (abs(maze[2] - maze[5]) != 1 &&
abs(maze[2] - maze[6]) != 1 &&
abs(maze[3] - maze[4]) != 1 &&
abs(maze[3] - maze[7]) != 1 && abs(maze[3] - maze[8]) != 1)
if (abs(maze[4] - maze[5]) != 1 &&
abs(maze[4] - maze[9]) != 1 &&
abs(maze[4] - maze[8]) != 1 &&
abs(maze[4] - maze[7]) != 1)
if (abs(maze[5] - maze[6]) != 1 &&
abs(maze[5] - maze[9]) != 1 &&
abs(maze[5] - maze[8]) != 1)
if (abs(maze[6] - maze[9]) != 1 &&
abs(maze[7] - maze[8]) != 1 &&
abs(maze[8] - maze[9]) != 1)
ans++;
} while (next_permutation(maze, maze + 10));
cout << ans << endl;
return 0;
}