poj1321题解(也是我的第一篇博客)

和八皇后问题基本类似,回溯算法搞定。//在poj提交时最好不要用布
//尔类型,ce过

#include <stdio.h>
#include <string.h>
#include <stdbool.h>
char chess[9][10];//最后一个放换行符
int n,k,count;

bool is_put(int row,int cline)
{
    int i;
    for(i=1;i<=n;i++)
        if(!chess[i][cline]||!chess[row][i])
            return false;
    return true;
}
void dfs(int nrow,int hget)
{
    int i,j;
    if(hget==k) {
        count++;
        return;
    }
    for(i=nrow;i<=n;i++)
        for(j=1;j<=n;j++)
        {
            if(chess[i][j]=='#')
            {
                if(is_put(i,j))
                {
                    chess[i][j]='\0';
                    dfs(i+1,hget+1);
                    chess[i][j]='#';
                }
            }
        }


}
int main(int argc, char const *argv[])
{
    int i,j;
    while(scanf("%d %d",&n,&k)==2&&n!=-1&&k!=-1)
    {
        getchar();//去掉第一行的换行符
        memset(chess,0,sizeof(chess));
        for(i=1;i<=n;i++)
            for(j=1;j<=n+1;j++)
                scanf("%c",chess[i]+j);
        count=0;
        dfs(1,0);
        printf("%d\n",count );
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值