Sparse Table算法+poj3264(Balanced line up)题解----倍增思想

题意就是求一段区间的最大值和最小值之差(RMQ问题)。由于查询量大,考虑使用st表(空间复杂度(O(nlogn)),初始化复杂度(O(nlogn)),查询复杂度(O(1))!!!)

Sparse Table算法,简称ST算法,可以用来求解RMQ(区间最值查询)问题。
RMQ问题的形式一般是:存在一个大数组,要求对于给定的起点和终点,迅速回答出这段区间的最大值或最小值。
最朴素的方式是扫描起点到终点的所有数,维护其中的最值,这样的复杂度是O(n^2)的,速度太慢。ST算法是使用的是类似于二分的动态规划思想,其复杂度是O(nlogn),因此查询速度非常快。
ST算法的执行过程(以求最大值为例):
1、初始化:
设原数组为x[N]。
先开一个数组dp[N][33]。其中dp[i][j]表示的是从下标为i的元素开始,到下标为(i + 2^j - 1)的元素为止,这些元素中的最大值。对于整型而言,其值不会超过2^32,因此第二维大小为33已经足够。
因此dp[i][0]表示的是元素本身,因此可以初始化为dp[i][0] = x[i]。
对于其他的dp[i][j],可以采用动态规划的方式求出,递推式为dp[i][j] = max(dp[i][j - 1], dp[i + 2 ^ (j - 1)][j - 1]),其实就是把一段区间切成两段大小相等的区间,当前区间的最大值就是两个子区间的最大值中的较大者。
初始化的复杂度为O(nlogn)。
2、求解:
对于给定的起点srt及终点end,可以得出区间大小为range = end - srt + 1。
因此可以找到一个整数k = floor(log2(range))。这样区间就可以被划分为子区间[srt, srt + (2 ^ k) - 1],子区间[end - (2 ^ k) + 1, end]。这两个很可能会有重叠,重合显然不影响求解(不妨举几个数据模拟一下)。因此对于srt和end,可以得到解为res = max(dp[srt][k], dp[end - (2 ^ k) + 1][k])。
求解的复杂度为O(1)。
显然可以使用二进制来计算k,速度会相对快一些。
具体方法是:
k = 0, p = 2, range = end - srt + 1;
while (p <= range)
{
k++;
p <<= 1;
}

//st表初始化方法
for(int i=1;i<=n;i++) {scanf("%d",arr+i);
    fx[i][0]=fn[i][0]=arr[i];
    }
    for(int d=1;(1<<d)<=n;d++)
        for(int i=1;i<=n;i++)
    if(i+(1<<(d-1))<=n)//这里要好好想一下为什么
        fx[i][d]=max(fx[i][d-1],fx[i+(1<<(d-1))][d-1] ),
        fn[i][d]=min(fn[i][d-1],fn[i+(1<<(d-1))][d-1] );
    else fx[i][d]=fx[i][d-1],fn[i][d]=fn[i][d-1];
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define ms(X) memset(X,0,sizeof(X))
using namespace std;
typedef long long LL;
int arr[50005],fx[50005][34],fn[50005][34];
int main()
{
    int n,q;
    scanf("%d %d",&n,&q);
    for(int i=1;i<=n;i++) {scanf("%d",arr+i);
    fx[i][0]=fn[i][0]=arr[i];
    }
    for(int d=1;(1<<d)<=n;d++)
        for(int i=1;i<=n;i++)
    if(i+(1<<(d-1))<=n)
        fx[i][d]=max(fx[i][d-1],fx[i+(1<<(d-1))][d-1] ),
        fn[i][d]=min(fn[i][d-1],fn[i+(1<<(d-1))][d-1] );
    else fx[i][d]=fx[i][d-1],fn[i][d]=fn[i][d-1];
    while(q--)
    {
        int tmin,tmax,a,b;
        scanf("%d %d",&a,&b);
        int rang=b-a+1;
        int k=0,p=2;
        while(p<=rang ) {k++;p<<=1;}
        tmin=min(fn[a][k],fn[b-(1<<k)+1][k]);
        tmax=max(fx[a][k],fx[b-(1<<k)+1][k]);
        printf("%d\n",tmax-tmin);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值