数据处理之相似度

一、相似度计算

相似度计算常用的有:

  1. 欧几里得距离(Eucledian Distance)或称 欧氏距离
  2. 余弦相似度 (Cosine Similarity)
  3. 杰卡德相似系数(Jaccard Similarity coefficient)
  4. 皮尔逊相关系数(Pearson correlation)
    下面分别来介绍

1.欧几里得距离

欧氏距离在现实空间(3维)中就是我们理解的距离,使用欧氏距离计算相似度就是认为两个东西离得越近就认为它们越相似。公式如下:
d i s t a n c e = ∑ k = 1 n ( x − y ) 2 distance=\sqrt{\sum_{k=1}^{n}\left(x-y\right)^{2}} distance=k=1n(xy)2
python实现代码:

import numpy as np
x=np.random.random(8)
y=np.random.random(8)
distance=np.sqrt(np.sum(np.square(x-y)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值