一、相似度计算
相似度计算常用的有:
- 欧几里得距离(Eucledian Distance)或称 欧氏距离
- 余弦相似度 (Cosine Similarity)
- 杰卡德相似系数(Jaccard Similarity coefficient)
- 皮尔逊相关系数(Pearson correlation)
下面分别来介绍
1.欧几里得距离
欧氏距离在现实空间(3维)中就是我们理解的距离,使用欧氏距离计算相似度就是认为两个东西离得越近就认为它们越相似。公式如下:
d
i
s
t
a
n
c
e
=
∑
k
=
1
n
(
x
−
y
)
2
distance=\sqrt{\sum_{k=1}^{n}\left(x-y\right)^{2}}
distance=k=1∑n(x−y)2
python实现代码:
import numpy as np
x=np.random.random(8)
y=np.random.random(8)
distance=np.sqrt(np.sum(np.square(x-y)))