数据挖掘和机器学习工程师面试题积累

常见的损失函数?
决策树的剪枝?
集成学习?
boosting和bagging区别
偏差和方差
为什么增加数据可以降低过拟合?
过拟合和欠拟合?
过拟合和欠拟合对偏差和方差的影响?
过拟合以及各类情况下过拟合的解决措施?
梯度消失和剃度爆炸
常见的深度学习优化器
激活函数有哪些
线性回归和逻辑回归
准确率和召回率的
决策树的类型以及介绍?
正则化
讲讲逻辑回归模型?
讲讲gbdt模型?
讲讲xgboost模型?
Xgboost和gbdt的区别?
Xgboost模型调参步骤?
条件熵,信息熵
关于交叉验证,所有机器学习算法都需要交叉验证么?
维度灾难以及处理策略?
Spark的application划分
特征工程的处理?
特征重要性怎么表现?
如何进行特征选择?
不同的编码模式对模型效果的影响?
对于类别特征怎么处理?
Keras包含两种模型,分别是?
Lstm的cell结构?
季节趋势性的处理?
轻量级的集成学习模型?
Hive优化?
数据倾斜产生的原因及解决办法?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值