在特定情况下计算并绘制梁弯曲的挠曲线

特定情况下的挠曲线计算及绘制

个人MATLAB大作业,在特定情况下计算并绘制梁弯曲的挠曲线。

问题提出

计算及绘制下图所示的悬臂梁的挠曲线方程及挠曲线。

在这里插入图片描述
其中:

F——集中力大小。
a——集中力作用点到固定端的距离。
M——集中力偶矩大小。
b——集中力偶矩作用点到固定端的距离。
L——杆长。
D——园杆直径。
E——弹性模量。
问题分析
分析以上问题,本题可用叠加法求弯曲变形,受力分析可知挠曲线方程:

切向集中力单独作用下:
在这里插入图片描述
实验程序及解释
需要使用者给定材料信息和受力情况,编写代码:
disp(‘给定材料信息及受力情况’);

L=input('园杆长度L(/m)=');
D=input('园杆直径D(/m)=');
E=input('弹性模量E(/GPa)=');
F=input('切向集中力大小【向下为正,若无取零】F(/N)=');
a=input('切向集中力作用位置a(/m)=');
M=input('集中力偶矩大小【逆时针为正,若无取零】M(/N*m)=');
b=input('集中力偶矩作用位置b(/m)=');
disp('给定计算精度');
n=input('计算精度=');

对惯性矩进行计算:
I=double(D^4*3.14/32);
计算挠度,将上述数学公式写成MATLAB代码:
%计算由集中力引起的挠度

x1=0:n:a;
vx1=(-F*x1.^2*3*a+F*x1.^3)*(1/(6*E*10^9*I));
x2=a:n:L;
vx2=(-F*a.^2*3*x2+F*a.^3)*(1/(6*E*10^9*I));

%计算由集中力偶引起的挠度

x3=0:n:b;
vx3=(-M*x3.^2)*(1/(2*E*10^9*I));
x4=b:n:L;
vx4=(-M*b*x4+M*0.5*b.^2)*(1/(E*10^9*I));

连接挠度矩阵:

v11=[vx1,vx2];
v22=[vx3,vx4];

使用叠加法计算总挠度:

v33=v22+v11;

绘图:

xu=[x1,x2];
plot(xu,v33),xlabel('x/m'),ylabel('v(x)/m')

title(‘挠曲线图’)
grid on;
实验结果
给定数据
园杆长度/m:3

园杆直径/m:0.06

弹性模量/GPa:210

切向集中力大小/N:4000

切向集中力作用位置/m:0.7

集中力偶矩大小/N*m:250

集中力偶矩作用位置/m:0.4

给定计算精度:0.001
在这里插入图片描述

完整程序

% Deflection curve calculation and drawing
% (C)2021 SI-Xiaolong(ustb_stu_sixiaolong@outlook.com)
% MIT License

%清理
clear all
clc

%给定信息
disp('给定材料信息及受力情况');
L=input('园杆长度L(/m)=');
D=input('园杆直径D(/m)=');
E=input('弹性模量E(/GPa)=');
F=input('切向集中力大小【向下为正,若无取零】F(/N)=');
a=input('切向集中力作用位置a(/m)=');
M=input('弯矩大小【逆时针为正,若无取零】M(/N*m)=');
b=input('弯矩作用位置b(/m)=');
disp('给定计算精度');
n=input('计算精度=');

%惯性矩计算
I=double(D^4*3.14/32);

%计算由集中力引起的挠度
x1=0:n:a;
vx1=(-F*x1.^2*3*a+F*x1.^3)*(1/(6*E*10^9*I));
x2=a:n:L;
vx2=(-F*a.^2*3*x2+F*a.^3)*(1/(6*E*10^9*I));
%计算由集中力偶引起的挠度
x3=0:n:b;
vx3=(-M*x3.^2)*(1/(2*E*10^9*I));
x4=b:n:L;
vx4=(-M*b*x4+M*0.5*b.^2)*(1/(E*10^9*I));

%连接矩阵
v11=[vx1,vx2];
v22=[vx3,vx4];

%采用叠加法计算总挠度
v33=v22+v11;

%绘图
xu=[x1,x2];
plot(xu,v33),xlabel('x/m'),ylabel('v(x)/m')
title('挠曲线图')
grid on;
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习的喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值