朴素贝叶斯

y为类别,x为特征向量
p(y|x)=p(xy)/p(x)=p(x|y)p(y)/p(x)
事实上转化为p(x|y)p(y)的求解
p(y)很简单只要求对应类别在训练数据中的比即可
至于p(x|y)的话
这里写图片描述

朴素贝叶斯有一个假设,即X中的各个特征之间是相互独立的。故而
p(x|y)=各个p(xi|y)的叠乘
对于单个p(xi|y)的概率求解,其实就是求出在C类当中,第I个特征值为xi的概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值