y为类别,x为特征向量
p(y|x)=p(xy)/p(x)=p(x|y)p(y)/p(x)
事实上转化为p(x|y)p(y)的求解
p(y)很简单只要求对应类别在训练数据中的比即可
至于p(x|y)的话
朴素贝叶斯有一个假设,即X中的各个特征之间是相互独立的。故而
p(x|y)=各个p(xi|y)的叠乘
对于单个p(xi|y)的概率求解,其实就是求出在C类当中,第I个特征值为xi的概率
y为类别,x为特征向量
p(y|x)=p(xy)/p(x)=p(x|y)p(y)/p(x)
事实上转化为p(x|y)p(y)的求解
p(y)很简单只要求对应类别在训练数据中的比即可
至于p(x|y)的话
朴素贝叶斯有一个假设,即X中的各个特征之间是相互独立的。故而
p(x|y)=各个p(xi|y)的叠乘
对于单个p(xi|y)的概率求解,其实就是求出在C类当中,第I个特征值为xi的概率