NNDL 实验五 前馈神经网络(3)鸢尾花分类

目录

深入研究鸢尾花数据集

4.5 实践:基于前馈神经网络完成鸢尾花分类

4.5.1 小批量梯度下降法

4.5.2 数据处理

4.5.3 模型构建

4.5.4 完善Runner类

4.5.5 模型训练

4.5.6 模型评价

4.5.7 模型预测

思考题

总结


 

深入研究鸢尾花数据集

画出数据集中150个数据的前两个特征的散点分布图:

【统计学习方法】感知机对鸢尾花(iris)数据集进行二分类

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import Perceptron

"""自定义感知机模型"""
# 数据线性可分,二分类数据
# 此处为一元一次线性方程
class Model:
    def __init__(self):
        # 创建指定形状的数组,数组元素以 1 来填充
        self.w = np.ones(len(data[0]) - 1, dtype=np.float32)
        self.b = 0  # 初始w/b的值
        self.l_rate = 0.1
        # self.data = data

    def sign(self, x, w, b):
        y = np.dot(x, w) + b  # 求w,b的值
        # Numpy中dot()函数主要功能有两个:向量点积和矩阵乘法。
        # 格式:x.dot(y) 等价于 np.dot(x,y) ———x是m*n 矩阵 ,y是n*m矩阵,则x.dot(y) 得到m*m矩阵
        return y

    # 随机梯度下降法
    # 随机梯度下降法(SGD),随机抽取一个误分类点使其梯度下降。根据损失函数的梯度,对w,b进行更新
    def fit(self, X_train, y_train):  # 将参数拟合 X_train数据集矩阵 y_train特征向量
        is_wrong = False
        # 误分类点的意思就是开始的时候,超平面并没有正确划分,做了错误分类的数据。
        while not is_wrong:
            wrong_count = 0  # 误分为0,就不用循环,得到w,b
            for d in range(len(X_train)):
                X = X_train[d]
                y = y_train[d]
                if y * self.sign(X, self.w, self.b) <= 0:
                    # 如果某个样本出现分类错误,即位于分离超平面的错误侧,则调整参数,使分离超平面开始移动,直至误分类点被正确分类。
                    self.w = self.w + self.l_rate * np.dot(y, X)  # 调整w和b
                    self.b = self.b + self.l_rate * y
                    wrong_count += 1
            if wrong_count == 0:
                is_wrong = True
        return 'Perceptron Model!'

    # 得分
    def score(self):
        pass


# 导入数据集
df = pd.read_csv('./iris/Iris.csv', usecols=[1, 2, 3, 4, 5])

# pandas打印表格信息
# print(df.info())

# pandas查看数据集的头5条记录
# print(df.head())

"""绘制训练集基本散点图,便于人工分析,观察数据集的线性可分性"""
# 表示绘制图形的画板尺寸为8*5
plt.figure(figsize=(8, 5))
# 散点图的x坐标、y坐标、标签
plt.scatter(df[:50]['SepalLengthCm'], df[:50]['SepalWidthCm'], label='Iris-setosa')
plt.scatter(df[50:100]['SepalLengthCm'], df[50:100]['SepalWidthCm'], label='Iris-versicolor')
plt.scatter(df[100:150]['SepalLengthCm'], df[100:150]['SepalWidthCm'], label='Iris-virginica')
plt.xlabel('SepalLengthCm')
plt.ylabel('SepalWidthCm')
# 添加标题 '鸢尾花萼片的长度与宽度的散点分布'
plt.title('Scattered distribution of length and width of iris sepals.')
# 显示标签
plt.legend()
plt.show()


# 取前100条数据中的:前2个特征+标签,便于训练
data = np.array(df.iloc[:100, [0, 1, -1]])
# 数据类型转换,为了后面的数学计算
X, y = data[:, :-1], data[:, -1]
y = np.array([1 if i == 'Iris-setosa' else -1 for i in y])


"""自定义感知机模型,开始训练"""
perceptron = Model()
perceptron.fit(X, y)
# 最终参数
print(perceptron.w, perceptron.b)
# 绘图
x_points = np.linspace(4, 7, 10)
y_ = -(perceptron.w[0] * x_points + perceptron.b) / perceptron.w[1]
plt.plot(x_points, y_)
plt.scatter(df[:50]['SepalLengthCm'], df[:50]['SepalWidthCm'], label='Iris-setosa')
plt.scatter(df[50:100]['SepalLengthCm'], df[50:100]['SepalWidthCm'], label='Iris-versicolor')
plt.xlabel('SepalLengthCm')
plt.ylabel('SepalWidthCm')
# 添加标题 '自定义感知机模型训练结果'
plt.title('Training results of Custom perceptron model.')
plt.legend()
plt.show()


"""sklearn感知机模型,开始训练"""
# 使用训练数据进行训练
clf = Perceptron()
# 得到训练结果,权重矩阵
clf.fit(X, y)
# Weights assigned to the features.输出特征权重矩阵
# print(clf.coef_)
# 超平面的截距 Constants in decision function.
# print(clf.intercept_)
# 对测试集预测
# print(clf.predict([[6.0, 4.0]]))
# 对训练集评分
# print(clf.score(X, y))

# 绘图
x_points = np.linspace(4, 7, 10)
y_ = -(clf.coef_[0][0] * x_points + clf.intercept_[0]) / clf.coef_[0][1]
plt.plot(x_points, y_)
plt.scatter(df[:50]['SepalLengthCm'], df[:50]['SepalWidthCm'], label='Iris-setosa')
plt.scatter(df[50:100]['SepalLengthCm'], df[50:100]['SepalWidthCm'], label='Iris-versicolor')
plt.xlabel('SepalLengthCm')
plt.ylabel('SepalWidthCm')
# 添加标题 'sklearn感知机模型训练结果'
plt.title('Training results of sklearn perceptron model.')
plt.legend()
plt.show()

 

 

 


4.5 实践:基于前馈神经网络完成鸢尾花分类


继续使用第三章中的鸢尾花分类任务,将Softmax分类器替换为前馈神经网络。

损失函数:交叉熵损失;
优化器:随机梯度下降法;
评价指标:准确率。



4.5.1 小批量梯度下降法

在梯度下降法中,目标函数是整个训练集上的风险函数,这种方式称为批量梯度下降法(Batch Gradient Descent,BGD)。 批量梯度下降法在每次迭代时需要计算每个样本上损失函数的梯度并求和。当训练集中的样本数量NN很大时,空间复杂度比较高,每次迭代的计算开销也很大。


为了减少每次迭代的计算复杂度,我们可以在每次迭代时只采集一小部分样本,计算在这组样本上损失函数的梯度并更新参数,这种优化方式称为小批量梯度下降法(Mini-Batch Gradient Descent,Mini-Batch GD)。

第tt次迭代时,随机选取一个包含KK个样本的子集BtBt,计算这个子集上每个样本损失函数的梯度并进行平均,然后再进行参数更新

其中K为批量大小(Batch Size)。K通常不会设置很大,一般在1∼100之间。在实际应用中为了提高计算效率,通常设置为2的幂2^n。
在实际应用中,小批量随机梯度下降法有收敛快、计算开销小的优点,因此逐渐成为大规模的机器学习中的主要优化算法。
此外,随机梯度下降相当于在批量梯度下降的梯度上引入了随机噪声。在非凸优化问题中,随机梯度下降更容易逃离局部最优点。
小批量随机梯度下降法的训练过程如下:

为了小批量梯度下降法,我们需要对数据进行随机分组。

目前,机器学习中通常做法是构建一个数据迭代器,每个迭代过程中从全部数据集中获取一批指定数量的数据。

 

4.5.2 数据处理

加载数据集:

import copy
import numpy as np
import torch
from sklearn.datasets import load_iris
import torch.nn as nn
import torch.nn.functional as F

#加载数据集
def load_data(shuffle=True):
    #加载原始数据
    X = np.array(load_iris().data, dtype=np.float32)
    y = np.array(load_iris().target, dtype=np.int64)

    X = torch.as_tensor(X)
    y = torch.as_tensor(y)

    #数据归一化
    X_min = torch.min(X, dim=0)
    X_max = torch.max(X, dim=0)
    X = (X-X_min.values) / (X_max.values-X_min.values)

    #如果shuffle为True,随机打乱数据
    if shuffle:
        idx = torch.randperm(X.shape[0])
        X_new = copy.deepcopy(X)
        y_new = copy.deepcopy(y)
        for i in range(X.shape[0]):
            X_new[i] = X[idx[i]]
            y_new[i] = y[idx[i]]
        X = X_new
        y = y_new

    return X, y

class IrisDataset(torch.utils.data.Dataset):
    def __init__(self, mode='train', num_train=120, num_dev=15):
        super(IrisDataset, self).__init__()
        # 调用第三章中的数据读取函数,其中不需要将标签转成one-hot类型
        X, y = load_data(shuffle=True)
        if mode == 'train':
            self.X, self.y = X[:num_train], y[:num_train]
        elif mode == 'dev':
            self.X, self.y = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
        else:
            self.X, self.y = X[num_train + num_dev:], y[num_train + num_dev:]

    def __getitem__(self, idx):
        return self.X[idx], self.y[idx]

    def __len__(self):
        return len(self.y)
        
torch.manual_seed(12)
train_dataset = IrisDataset(mode='train')
dev_dataset = IrisDataset(mode='dev')
test_dataset = IrisDataset(mode='test')
# 打印训练集长度
print ("length of train set: ", len(train_dataset))

使用DataLoader进行封装 

# 批量大小
batch_size = 16

# 加载数据
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = torch.utils.data.DataLoader(dev_dataset, batch_size=batch_size)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size)


4.5.3 模型构建

输入层神经元个数为4,输出层神经元个数为3,隐含层神经元个数为6。

# 实现一个两层前馈神经网络
class Model_MLP_L2_V3(torch.nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(Model_MLP_L2_V3, self).__init__()
        self.fc1 = torch.nn.Linear(input_size, hidden_size)
        w_ = torch.normal(0, 0.01, size=(hidden_size, input_size), requires_grad=True)
        self.fc1.weight = torch.nn.Parameter(w_)
        self.fc1.bias = torch.nn.init.constant_(self.fc1.bias, val=1.0)
        self.fc2 = torch.nn.Linear(hidden_size, output_size )
        w2 = torch.normal(0, 0.01, size=(output_size, hidden_size), requires_grad=True)
        self.fc2.weight = nn.Parameter(w2)
        self.fc2.bias = torch.nn.init.constant_(self.fc2.bias, val=1.0)
        self.act = torch.sigmoid

    def forward(self, inputs):
        outputs = self.fc1(inputs)
        outputs = self.act(outputs)
        outputs = self.fc2(outputs)
        return outputs

ffnn_model =Model_MLP_L2_V3(input_size=4, hidden_size=6,output_size=3)


4.5.4 完善Runner类

基于RunnerV2类进行完善实现了RunnerV3类。其中训练过程使用自动梯度计算,使用DataLoader加载批量数据,使用随机梯度下降法进行参数优化;模型保存时,使用state_dict方法获取模型参数;模型加载时,使用set_state_dict方法加载模型参数。
由于这里使用随机梯度下降法对参数优化,所以数据以批次的形式输入到模型中进行训练,那么评价指标计算也是分别在每个批次进行的,要想获得每个epoch整体的评价结果,需要对历史评价结果进行累积。这里定义Accuracy类实现该功能。

class RunnerV3(object):
    def __init__(self, model, optimizer, loss_fn, metric, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric  # 只用于计算评价指标

        # 记录训练过程中的评价指标变化情况
        self.dev_scores = []

        # 记录训练过程中的损失函数变化情况
        self.train_epoch_losses = []  # 一个epoch记录一次loss
        self.train_step_losses = []  # 一个step记录一次loss
        self.dev_losses = []

        # 记录全局最优指标
        self.best_score = 0

    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型切换为训练模式
        self.model.train()

        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_steps = kwargs.get("log_steps", 100)
        # 评价频率
        eval_steps = kwargs.get("eval_steps", 0)

        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")

        custom_print_log = kwargs.get("custom_print_log", None)

        # 训练总的步数
        num_training_steps = num_epochs * len(train_loader)

        if eval_steps:
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None!')
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')

        # 运行的step数目
        global_step = 0

        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            # 用于统计训练集的损失
            total_loss = 0
            for step, data in enumerate(train_loader):
                X, y = data
                # 获取模型预测
                logits = self.model(X)
                loss = self.loss_fn(logits, y)  # 默认求mean
                total_loss += loss

                # 训练过程中,每个step的loss进行保存
                self.train_step_losses.append((global_step, loss.item()))

                if log_steps and global_step % log_steps == 0:
                    print(
                        f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")

                # 梯度反向传播,计算每个参数的梯度值
                loss.backward()

                if custom_print_log:
                    custom_print_log(self)

                # 小批量梯度下降进行参数更新
                self.optimizer.step()
                # 梯度归零
                self.optimizer.zero_grad()

                # 判断是否需要评价
                if eval_steps > 0 and global_step > 0 and \
                        (global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):

                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f"[Evaluate]  dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")

                    # 将模型切换为训练模式
                    self.model.train()

                    # 如果当前指标为最优指标,保存该模型
                    if dev_score > self.best_score:
                        self.save_model(save_path)
                        print(
                            f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")
                        self.best_score = dev_score

                global_step += 1

            # 当前epoch 训练loss累计值 
            trn_loss = (total_loss / len(train_loader)).item()
            # epoch粒度的训练loss保存
            self.train_epoch_losses.append(trn_loss)

        print("[Train] Training done!")

    # 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def evaluate(self, dev_loader, **kwargs):
        assert self.metric is not None

        # 将模型设置为评估模式
        self.model.eval()

        global_step = kwargs.get("global_step", -1)

        # 用于统计训练集的损失
        total_loss = 0

        # 重置评价
        self.metric.reset()

        # 遍历验证集每个批次    
        for batch_id, data in enumerate(dev_loader):
            X, y = data

            # 计算模型输出
            logits = self.model(X)

            # 计算损失函数
            loss = self.loss_fn(logits, y).item()
            # 累积损失
            total_loss += loss

            # 累积评价
            self.metric.update(logits, y)

        dev_loss = (total_loss / len(dev_loader))
        dev_score = self.metric.accumulate()

        # 记录验证集loss
        if global_step != -1:
            self.dev_losses.append((global_step, dev_loss))
            self.dev_scores.append(dev_score)

        return dev_score, dev_loss

    # 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def predict(self, x, **kwargs):
        # 将模型设置为评估模式
        self.model.eval()
        # 运行模型前向计算,得到预测值
        logits = self.model(x)
        return logits

    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)

    def load_model(self, model_path):
        model_state_dict = torch.load(model_path)
        self.model.load_state_dict(model_state_dict)


class Accuracy(object):
    def __init__(self, is_logist=True):
        # 用于统计正确的样本个数
        self.num_correct = 0
        # 用于统计样本的总数
        self.num_count = 0

        self.is_logist = is_logist

    def update(self, outputs, labels):
        # 判断是二分类任务还是多分类任务,shape[1]=1时为二分类任务,shape[1]>1时为多分类任务
        if outputs.shape[1] == 1: # 二分类
            outputs = torch.squeeze(outputs, axis=-1)
            if self.is_logist:
                # logist判断是否大于0
                preds = (outputs>=0).to(torch.float32)
            else:
                # 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
                preds = (outputs>=0.5).to(torch.float32)
        else:
            # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
            preds = torch.argmax(outputs, dim=1).int()

        # 获取本批数据中预测正确的样本个数
        labels = torch.squeeze(labels, axis=-1)
        batch_correct = torch.sum(torch.tensor(preds==labels, dtype=torch.float32)).numpy()
        batch_count = len(labels)

        # 更新num_correct 和 num_count
        self.num_correct += batch_correct
        self.num_count += batch_count

    def accumulate(self):
        # 使用累计的数据,计算总的指标
        if self.num_count == 0:
            return 0
        return self.num_correct / self.num_count

    def reset(self):
        # 重置正确的数目和总数
        self.num_correct = 0
        self.num_count = 0

    def name(self):
        return "Accuracy"


4.5.5 模型训练

使用训练集和验证集进行训练。

import torch.optim as opt
lr = 0.2
# 定义网络
model = fnn_model
# 定义优化器
optimizer = opt.SGD(model.parameters(),lr=lr)
# 定义损失函数。softmax+交叉熵
loss_fn = F.cross_entropy

# 定义评价指标
metric = Accuracy(is_logist=True)

runner = RunnerV3(model, optimizer, loss_fn, metric)

# 启动训练
log_steps = 100
eval_steps = 50
runner.train(train_loader, dev_loader,
            num_epochs=150, log_steps=log_steps, eval_steps = eval_steps,
            save_path="best_model.pdparams")

最后进行可视化结果.

import matplotlib.pyplot as plt


# 绘制训练集和验证集的损失变化以及验证集上的准确率变化曲线
def plot_training_loss_acc(runner, fig_name,
                           fig_size=(16, 6),
                           sample_step=20,
                           loss_legend_loc="upper right",
                           acc_legend_loc="lower right",
                           train_color="#e4007f",
                           dev_color='#f19ec2',
                           fontsize='large',
                           train_linestyle="-",
                           dev_linestyle='--'):
    plt.figure(figsize=fig_size)

    plt.subplot(1, 2, 1)
    train_items = runner.train_step_losses[::sample_step]
    train_steps = [x[0] for x in train_items]
    train_losses = [x[1] for x in train_items]

    plt.plot(train_steps, train_losses, color=train_color, linestyle=train_linestyle, label="Train loss")
    if len(runner.dev_losses) > 0:
        dev_steps = [x[0] for x in runner.dev_losses]
        dev_losses = [x[1] for x in runner.dev_losses]
        plt.plot(dev_steps, dev_losses, color=dev_color, linestyle=dev_linestyle, label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize=fontsize)
    plt.xlabel("step", fontsize=fontsize)
    plt.legend(loc=loss_legend_loc, fontsize='x-large')

    # 绘制评价准确率变化曲线
    if len(runner.dev_scores) > 0:
        plt.subplot(1, 2, 2)
        plt.plot(dev_steps, runner.dev_scores,
                 color=dev_color, linestyle=dev_linestyle, label="Dev accuracy")

        # 绘制坐标轴和图例
        plt.ylabel("score", fontsize=fontsize)
        plt.xlabel("step", fontsize=fontsize)
        plt.legend(loc=acc_legend_loc, fontsize='x-large')

    plt.savefig(fig_name)
    plt.show()


plot_training_loss_acc(runner, 'fw-loss.pdf')

 

 从可视化结果来看准确率随着迭代次数增加逐渐上升,损失函数下降。


4.5.6 模型评价

# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))


4.5.7 模型预测

# 获取测试集中第一条数据
X, label = train_dataset[0]
logits = runner.predict(X)

pred_class = torch.argmax(logits[0]).numpy()
label = label.numpy()

# 输出真实类别与预测类别
print("The true category is {} and the predicted category is {}".format(label, pred_class))

 


思考题

1. 对比Softmax分类和前馈神经网络分类。(必做)

首先构造一个数据集,

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from matplotlib.colors import ListedColormap
 
iris = datasets.load_iris()  # 加载数据
list(iris.keys())  # 属性
X = iris["data"][:, (2, 3)]  # 花瓣长度, 花瓣宽度
y = iris["target"]
# 设置超参数multi_class为"multinomial",指定一个支持Softmax回归的求解器,默认使用l2正则化,可以通过超参数C进行控制
softmax_reg = LogisticRegression(multi_class="multinomial", solver="lbfgs", C=500, random_state=42)
softmax_reg.fit(X, y)
softmax_reg.predict([[5, 2]])  # 输出:array([2])
softmax_reg.predict_proba([[5, 2]])
x0, x1 = np.meshgrid(np.linspace(0, 8, 500).reshape(-1, 1), np.linspace(0, 3.5, 200).reshape(-1, 1))
X_new = np.c_[x0.ravel(), x1.ravel()]
y_proba = softmax_reg.predict_proba(X_new)
y_predict = softmax_reg.predict(X_new)
zz1 = y_proba[:, 1].reshape(x0.shape)
zz = y_predict.reshape(x0.shape)
plt.figure(figsize=(10, 4))
plt.plot(X[y == 2, 0], X[y == 2, 1], "g^", label="Iris virginica")
plt.plot(X[y == 1, 0], X[y == 1, 1], "bs", label="Iris versicolor")
plt.plot(X[y == 0, 0], X[y == 0, 1], "yo", label="Iris setosa")
custom_cmap = ListedColormap(['#fafab0', '#9898ff', '#a0faa0'])
plt.contourf(x0, x1, zz, cmap=custom_cmap)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="center left", fontsize=14)
plt.axis([0, 7, 0, 3.5])
plt.show()

 

softmax和前馈神经网络分布结果:

 

 

SVM:就是寻找最大分类间隔的过程,使得数据点到分类超平面之间的距离最大化。
SVM分类适合二分类问题,在文本分类尤其是针对二分类任务性能卓越,也可用于多分类
优点:如果新增一类,不需要重新训练所有的 SVM,只需要训练和新增这一类样本的分类器。而且这种方式在训练单个 SVM 模型的时候,训练速度快。
缺点:分类器的个数与 K 的平方成正比,所以当 K 较大时,训练和测试的时间会比较慢,用SVM解决多分类问题存在困难,对缺失数据敏感,对参数和核函数的选择敏感。

FNN:结合了神经网络系统和模糊系统的长处,它在处理非线性、模糊性等问题上有很大的优越性,在 智能信息处理方面存在巨大的潜力。 前馈神经网络是设计的第一种也是最简单的人工神经网络。在该网络中,信息仅在一个方向上从输入节点向前移动,通过隐藏节点(如果有)并到达输出节点。网络中没有循环或环路。
神经网络有很强的非线性拟合能力,可映射任意复杂的非线性关系,而且学习规则简单,便于计算机实现。具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,因此有很大的应用市场。
缺点不足:
(1)最严重的问题是没能力来解释自己的推理过程和推理依据。
(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。
(4)理论和学习算法还有待于进一步完善和提高。

  分类效果图可参考:


总结

1. 总结本次实验;

这次实验是完成鸢尾花分类,完成这次是实验使自己更加的了解到前馈神经网络,熟练地化结构图同时通过SVMFNN分类效果对比,对于SVM和FNN在查找大量网络资料,有了一些认识和理解。

2. 全面总结前馈神经网络,梳理知识点,建议画思维导图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值