NNDL 实验五 前馈神经网络(1)二分类任务

4.1 神经元

4.1.1 净活性值

使用pytorch计算一组输入的净活性值z
净活性值z经过一个非线性函数f(·)后,得到神经元的活性值a
在这里插入图片描述

使用pytorch计算一组输入的净活性值:

import torch

# 2个特征数为5的样本
X = torch.rand(size=[2, 5])

# 含有5个参数的权重向量
w = torch.rand(size=[5, 1])
# 偏置项
b = torch.rand(size=[1, 1])

# 使用'torch.matmul'实现矩阵相乘
z = torch.matmul(X, w) + b
print("input X:", X)
print("weight w:", w, "\nbias b:", b)
print("output z:", z)

运行结果:
在这里插入图片描述
在pytorch中学习相应函数torch.nn.Linear(features_in, features_out, bias=False)。

  • 使用nn.Linear完成输入张量的上述变换
import torch
import torch.nn as nn
from torch.autograd import Variable

m = nn.Linear(5, 1)
input = Variable(torch.rand(2, 5)) #包装Tensor使得支持自动微分
output = m(input)
print(output)

运行结果:
在这里插入图片描述

  • 进一步深入研究torch.nn.Linear()的使用:
    torch.nn是包含了构筑神经网络结构基本元素的包,在这个包中,可以找到任意的神经网络层。这些神经网络层都是nn.Module这个大类的子类。torch.nn.Linear就是神经网络中的线性层,可以实现形如 y=Xw^T+b的加和功能。
    torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
    这个函数主要是进行空间的线性映射,其中:
    in_features:输入数据的数据维度
    out_features:输出数据的数据维度
    执行过程:
    假设我们有一批数据x,x的维度为20维,这一批数据一共有128个,我们要将20维的x映射到30维空间的y中,下面是计算过程,其中w是Linear函数的weight权重在这里插入图片描述

【思考题】加权相加与仿射变换之间有什么区别和联系?

在这里插入图片描述

加权相加就是对数据在整体评估中占的重要作用设定比例,所有数的比例加起来应为1,然后将各数分别乘以各自的加权比例再相加。
Attention机制的具体计算过程,如果对目前大多数方法进行抽象的话,可以将其归纳为两个过程:第一个过程是根据Query和Key计算权重系数,第二个过程根据权重系数对Value进行加权求和。
仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。
仿射变换是在几何上定义为两个向量空间之间的一个仿射变换或者仿射映射由一个非奇异的线性变换(运用一次函数进行的变换)接上一个平移变换组成。
在有限维的情况,每个仿射变换可以由一个矩阵A和一个向量b给出,它可以写作A和一个附加的列b。一个仿射变换对应于一个矩阵和一个向量的乘法,而仿射变换的复合对应于普通的矩阵乘法,只要加入一个额外的行到矩阵的底下,这一行全部是0除了最右边是一个1,而列向量的底下要加上一个1。
仿射变换保留了:
(1)点之间的共线性,例如通过同一线之点 (即称为共线点)在变换后仍呈共线。
(2)向量沿着一线的比例,例如对相异共线三点与 的比例同于及。
(3)带不同质量的点之质心。

4.1.2 激活函数

激活函数通常为非线性函数,可以增强神经网络的表示能力和学习能力。
常用的激活函数有S型函数和ReLU函数。

4.1.2.1 Sigmoid 型函数

在这里插入图片描述

  1. 使用python实现并可视化“Logistic函数、Tanh函数”:
import matplotlib.pyplot as plt
import torch

# Logistic函数
def logistic(z):
    return 1.0 / (1.0 + torch.exp(-z))

# Tanh函数
def tanh(z):
    return (torch.exp(z) - torch.exp(-z)) / (torch.exp(z) + torch.exp(-z))

# 在[-10,10]的范围内生成10000个输入值,用于绘制函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), logistic(z).tolist(), color='#e4007f', label="Logistic Function")
plt.plot(z.tolist(), tanh(z).tolist(), color='#f19ec2', linestyle ='--', label="Tanh Function")

ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='lower right', fontsize='large')

plt.savefig('fw-logistic-tanh.pdf')
plt.show()

运行结果:
在这里插入图片描述

  1. 在pytorch中找到相应函数并测试
import matplotlib.pyplot as plt
import torch

# 在[-10,10]的范围内生成10000个输入值,用于绘制函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), torch.sigmoid(z).tolist(), color='#e4007f', label="Logistic Function")
plt.plot(z.tolist(), torch.tanh(z).tolist(), color='#f19ec2', linestyle ='--', label="Tanh Function")

ax = plt.gca() # 获取轴,默认有4个
# 隐藏两个轴,通过把颜色设置成none
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 调整坐标轴位置
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='lower right', fontsize='large')

plt.savefig('fw-logistic-tanh.pdf')
plt.show()

运行结果:
在这里插入图片描述

4.1.2.2 ReLU型函数

在这里插入图片描述

  1. 使用python实现并可视化可视化“ReLU、带泄露的ReLU的函数”:
import matplotlib.pyplot as plt
import torch

# ReLU
def relu(z):
    return torch.maximum(z, torch.tensor(0.))

# 带泄露的ReLU
def leaky_relu(z, negative_slope=0.1):
    # 当前版本paddle暂不支持直接将bool类型转成int类型,因此调用了paddle的cast函数来进行显式转换
    a1 = (torch.tensor((z > 0), dtype=torch.float32) * z)
    a2 = (torch.tensor((z <= 0), dtype=torch.float32) * (negative_slope * z))
    return a1 + a2

# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), relu(z).tolist(), color="#e4007f", label="ReLU Function")
plt.plot(z.tolist(), leaky_relu(z).tolist(), color="#f19ec2", linestyle="--", label="LeakyReLU Function")

ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()

运行结果:
在这里插入图片描述

  1. 在pytorch中找到相应函数并测试
import matplotlib.pyplot as plt
import torch

# 在[-10,10]的范围内生成一系列的输入值,用于绘制relu、leaky_relu的函数曲线
z = torch.linspace(-10, 10, 10000)

plt.figure()
plt.plot(z.tolist(), torch.relu(z).tolist(), color="#e4007f", label="ReLU Function")
plt.plot(z.tolist(), torch.nn.LeakyReLU(0.1)(z), color="#f19ec2", linestyle="--", label="LeakyReLU Function")

ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['left'].set_position(('data',0))
ax.spines['bottom'].set_position(('data',0))
plt.legend(loc='upper left', fontsize='large')
plt.savefig('fw-relu-leakyrelu.pdf')
plt.show()

运行结果:
在这里插入图片描述

4.2 基于前馈神经网络的二分类任务

每一层获取前一层神经元的活性值,并重复上述计算得到该层的活性值,传入到下一层。整个网络中无反馈,信号从输入层向输出层逐层的单向传播,得到网络最后的输出a 。
在这里插入图片描述

4.2.1 数据集构建

使用第3.1.1节中构建的二分类数据集:Moon1000数据集,其中训练集640条、验证集160条、测试集200条。该数据集的数据是从两个带噪音的弯月形状数据分布中采样得到,每个样本包含2个特征。

import math
import torch

def make_moons(n_samples=1000, shuffle=True, noise=None):
    """
    生成带噪音的弯月形状数据
    输入:
        - n_samples:数据量大小,数据类型为int
        - shuffle:是否打乱数据,数据类型为bool
        - noise:以多大的程度增加噪声,数据类型为None或float,noise为None时表示不增加噪声
    输出:
        - X:特征数据,shape=[n_samples,2]
        - y:标签数据, shape=[n_samples]
    """
    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out

    # 采集第1类数据,特征为(x,y)
    # 使用'torch.linspace'在0到pi上均匀取n_samples_out个值
    # 使用'torch.cos'计算上述取值的余弦值作为特征1,使用'torch.sin'计算上述取值的正弦值作为特征2
    outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
    outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))

    inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
    inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))

    print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)
    print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)

    # 使用'torch.concat'将两类数据的特征1和特征2分别延维度0拼接在一起,得到全部特征1和特征2
    # 使用'torch.stack'将两类特征延维度1堆叠在一起
    X = torch.stack(
        [torch.cat([outer_circ_x, inner_circ_x]),
         torch.cat([outer_circ_y, inner_circ_y])],
        axis=1
    )

    print('after cat shape:', torch.cat([outer_circ_x, inner_circ_x]).shape)
    print('X shape:', X.shape)

    # 使用'torch. zeros'将第一类数据的标签全部设置为0
    # 使用'torch. ones'将第一类数据的标签全部设置为1
    y = torch.cat(
        [torch.zeros(size=[n_samples_out]), torch.ones(size=[n_samples_in])]
    )

    print('y shape:', y.size())

    # 如果shuffle为True,将所有数据打乱
    if shuffle:
        # 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]

    # 如果noise不为None,则给特征值加入噪声
    if noise is not None:
        # 使用'torch.normal'生成符合正态分布的随机Tensor作为噪声,并加到原始特征上
        X += torch.normal(mean=0.0, std=noise, size=X.shape)

    return X, y


# 采样1000个样本
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.5)

num_train = 640
num_dev = 160
num_test = 200

X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]

y_train = y_train.reshape([-1,1])
y_dev = y_dev.reshape([-1,1])
y_test = y_test.reshape([-1,1])

运行结果:
在这里插入图片描述

4.2.2 模型构建

为了更高效的构建前馈神经网络,我们先定义每一层的算子,然后再通过算子组合构建整个前馈神经网络。
在这里插入图片描述

4.2.2.1 线性层算子

公式(4.8)对应一个线性层算子,权重参数采用默认的随机初始化,偏置采用默认的零初始化。代码实现如下:

from op import Op
import torch

# 实现线性层算子
class Linear(Op):
    def __init__(self, input_size, output_size, name, weight_init=torch.normal, bias_init=torch.zeros):
        """
        输入:
            - input_size:输入数据维度
            - output_size:输出数据维度
            - name:算子名称
            - weight_init:权重初始化方式,默认使用'torch.standard_normal'进行标准正态分布初始化
            - bias_init:偏置初始化方式,默认使用全0初始化
        """

        self.params = {}
        # 初始化权重
        self.params['W'] = weight_init(size=[input_size, output_size])
        # 初始化偏置
        self.params['b'] = bias_init(size=[1, output_size])
        self.inputs = None

        self.name = name

    def forward(self, inputs):
        """
        输入:
            - inputs:shape=[N,input_size], N是样本数量
        输出:
            - outputs:预测值,shape=[N,output_size]
        """
        self.inputs = inputs

        outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return outputs

4.2.2.2 Logistic算子(激活函数)

本节我们采用Logistic函数来作为公式(4.9)中的激活函数。这里也将Logistic函数实现一个算子,代码实现如下:

from op import Op
import torch

class Logistic(Op):
    def __init__(self):
        self.inputs = None
        self.outputs = None

    def forward(self, inputs):
        """
        输入:
            - inputs: shape=[N,D]
        输出:
            - outputs:shape=[N,D]
        """
        outputs = 1.0 / (1.0 + torch.exp(-inputs))
        self.outputs = outputs
        return outputs

4.2.2.3 层的串行组合

实现一个两层的用于二分类任务的前馈神经网络,选用Logistic作为激活函数,可以利用上面实现的线性层和激活函数算子来组装,代码实现如下:

from op import Op
from ad import Linear
from ae import Logistic

# 实现一个两层前馈神经网络
class Model_MLP_L2(Op):
    def __init__(self, input_size, hidden_size, output_size):
        """
        输入:
            - input_size:输入维度
            - hidden_size:隐藏层神经元数量
            - output_size:输出维度
        """
        self.fc1 = Linear(input_size, hidden_size, name="fc1")
        self.act_fn1 = Logistic()
        self.fc2 = Linear(hidden_size, output_size, name="fc2")
        self.act_fn2 = Logistic()

    def __call__(self, X):
        return self.forward(X)

    def forward(self, X):
        """
        输入:
            - X:shape=[N,input_size], N是样本数量
        输出:
            - a2:预测值,shape=[N,output_size]
        """
        z1 = self.fc1(X)
        a1 = self.act_fn1(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn2(z2)
        return a2

实例化一个两层的前馈网络,令其输入层维度为5,隐藏层维度为10,输出层维度为1。
并随机生成一条长度为5的数据输入两层神经网络,观察输出结果。

# 实例化模型
model = Model_MLP_L2(input_size=5, hidden_size=10, output_size=1)
# 随机生成1条长度为5的数据
X = torch.rand(size=[1, 5])
result = model(X)
print ("result: ", result)

运行结果:
在这里插入图片描述

4.2.3 损失函数

二分类交叉熵损失函数见第三章

4.2.4 模型优化

神经网络的层数通常比较深,其梯度计算和上一章中的线性分类模型的不同的点在于:线性模型通常比较简单可以直接计算梯度,而神经网络相当于一个复合函数,需要利用链式法则进行反向传播来计算梯度。

4.2.4.1 反向传播算法

前馈神经网络的参数梯度通常使用误差反向传播算法来计算。使用误差反向传播算法的前馈神经网络训练过程可以分为以下三步:

  1. 第1步是前向计算,可以利用算子的forward()方法来实现;
  2. 第2步是反向计算梯度,可以利用算子的backward()方法来实现;
  3. 第3步中的计算参数梯度也放到backward()中实现,更新参数放到另外的优化器中专门进行。

在上面实现算子的基础上,来实现误差反向传播算法。在上面的三个步骤中,

  1. 第1步是前向计算,可以利用算子的forward()方法来实现;
  2. 第2步是反向计算梯度,可以利用算子的backward()方法来实现;
  3. 第3步中的计算参数梯度也放到backward()中实现,更新参数放到另外的优化器中专门进行。

这样,在模型训练过程中,我们首先执行模型的forward(),再执行模型的backward(),就得到了所有参数的梯度,之后再利用优化器迭代更新参数。
以这我们这节中构建的两层全连接前馈神经网Model_MLP_L2为例,下图给出了其前向和反向计算过程:
在这里插入图片描述
下面我们按照反向的梯度传播顺序,为每个算子添加backward()方法,并在其中实现每一层参数的梯度的计算。

4.2.4.2 损失函数

在这里插入图片描述
实现损失函数的backward(),代码实现如下:

import torch
from op import Op
# 实现交叉熵损失函数
class BinaryCrossEntropyLoss(Op):
    def __init__(self, model):
        self.predicts = None
        self.labels = None
        self.num = None

        self.model = model

    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)

    def forward(self, predicts, labels):
        """
        输入:
            - predicts:预测值,shape=[N, 1],N为样本数量
            - labels:真实标签,shape=[N, 1]
        输出:
            - 损失值:shape=[1]
        """
        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts))
                                 + torch.matmul((1 - self.labels.t()), torch.log(1 - self.predicts)))

        loss = torch.squeeze(loss, axis=1)
        return loss

    def backward(self):
        # 计算损失函数对模型预测的导数
        loss_grad_predicts = -1.0 * (self.labels / self.predicts -
                                     (1 - self.labels) / (1 - self.predicts)) / self.num

        # 梯度反向传播
        self.model.backward(loss_grad_predicts)

4.2.4.3 Logistic算子

在这里插入图片描述

import torch
from op import Op
class Logistic(Op):
    def __init__(self):
        self.inputs = None
        self.outputs = None
        self.params = None

    def forward(self, inputs):
        outputs = 1.0 / (1.0 + torch.exp(-inputs))
        self.outputs = outputs
        return outputs

    def backward(self, grads):
        # 计算Logistic激活函数对输入的导数
        outputs_grad_inputs = torch.multiply(self.outputs, (1.0 - self.outputs))
        return torch.multiply(grads,outputs_grad_inputs)

4.2.4.4 线性层

在这里插入图片描述
具体实现代码如下:

import torch
from op import Op
class Linear(Op):
    def __init__(self, input_size, output_size, name, weight_init=torch.normal, bias_init=torch.zeros):
        self.params = {}
        self.params['W'] = weight_init(size=[input_size, output_size])
        self.params['b'] = bias_init(size=[1, output_size])

        self.inputs = None
        self.grads = {}

        self.name = name

    def forward(self, inputs):
        self.inputs = inputs
        outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return outputs

    def backward(self, grads):
        """
        输入:
            - grads:损失函数对当前层输出的导数
        输出:
            - 损失函数对当前层输入的导数
        """
        self.grads['W'] = torch.matmul(self.inputs.T, grads)
        self.grads['b'] = torch.sum(grads, axis=0)

        # 线性层输入的梯度
        return torch.matmul(grads, self.params['W'].T)

4.2.4.5 整个网络

实现完整的两层神经网络的前向和反向计算,代码实现如下:

from op import Op
from ad import Linear
from ae import Logistic


class Model_MLP_L2(Op):
    def __init__(self, input_size, hidden_size, output_size):
        # 线性层
        self.fc1 = Linear(input_size, hidden_size, name="fc1")
        # Logistic激活函数层
        self.act_fn1 = Logistic()
        self.fc2 = Linear(hidden_size, output_size, name="fc2")
        self.act_fn2 = Logistic()

        self.layers = [self.fc1, self.act_fn1, self.fc2, self.act_fn2]

    def __call__(self, X):
        return self.forward(X)

    # 前向计算
    def forward(self, X):
        z1 = self.fc1(X)
        a1 = self.act_fn1(z1)
        z2 = self.fc2(a1)
        a2 = self.act_fn2(z2)
        return a2

    # 反向计算
    def backward(self, loss_grad_a2):
        loss_grad_z2 = self.act_fn2.backward(loss_grad_a2)
        loss_grad_a1 = self.fc2.backward(loss_grad_z2)
        loss_grad_z1 = self.act_fn1.backward(loss_grad_a1)
        loss_grad_inputs = self.fc1.backward(loss_grad_z1)
4.2.4.6 优化器

在计算好神经网络参数的梯度之后,我们将梯度下降法中参数的更新过程实现在优化器中。
与第3章中实现的梯度下降优化器SimpleBatchGD不同的是,此处的优化器需要遍历每层,对每层的参数分别做更新。

from optimizer import Optimizer

class BatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(BatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        # 参数更新
        for layer in self.model.layers: # 遍历所有层
            if isinstance(layer.params, dict):
                for key in layer.params.keys():
                    layer.params[key] = layer.params[key] - self.init_lr * layer.grads[key]

4.2.5 完善Runner类:RunnerV2_1

  1. 支持自定义算子的梯度计算,在训练过程中调用self.loss_fn.backward()从损失函数开始反向计算梯度;
  2. 每层的模型保存和加载,将每一层的参数分别进行保存和加载。
import os
import torch

class RunnerV2_1(object):
    def __init__(self, model, optimizer, metric, loss_fn, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric

        # 记录训练过程中的评估指标变化情况
        self.train_scores = []
        self.dev_scores = []

        # 记录训练过程中的评价指标变化情况
        self.train_loss = []
        self.dev_loss = []

    def train(self, train_set, dev_set, **kwargs):
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)

        # 传入模型保存路径
        save_dir = kwargs.get("save_dir", None)

        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set
            # 获取模型预测
            logits = self.model(X)
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y)  # return a tensor

            self.train_loss.append(trn_loss.item())
            # 计算评估指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)

            self.loss_fn.backward()

            # 参数更新
            self.optimizer.step()

            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                print(f"[Evaluate] best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score
                if save_dir:
                    self.save_model(save_dir)

            if log_epochs and epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}/{num_epochs}, loss: {trn_loss.item()}")

    def evaluate(self, data_set):
        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评估指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss

    def predict(self, X):
        return self.model(X)

    def save_model(self, save_dir):
        # 对模型每层参数分别进行保存,保存文件名称与该层名称相同
        for layer in self.model.layers:  # 遍历所有层
            if isinstance(layer.params, dict):
                torch.save(layer.params, os.path.join(save_dir, layer.name + ".pdparams"))

    def load_model(self, model_dir):
        # 获取所有层参数名称和保存路径之间的对应关系
        model_file_names = os.listdir(model_dir)
        name_file_dict = {}
        for file_name in model_file_names:
            name = file_name.replace(".pdparams", "")
            name_file_dict[name] = os.path.join(model_dir, file_name)

        # 加载每层参数
        for layer in self.model.layers:  # 遍历所有层
            if isinstance(layer.params, dict):
                name = layer.name
                file_path = name_file_dict[name]
                layer.params = torch.load(file_path)

4.2.6 模型训练

使用训练集和验证集进行模型训练,共训练2000个epoch。评价指标为accuracy。代码实现如下:

from metric import accuracy
torch.manual_seed(123)
epoch_num = 1000
 
model_saved_dir = "r"C:\Users\DELL\PycharmProjects\pythonProject\CSDN""
 
# 输入层维度为2
input_size = 2
# 隐藏层维度为5
hidden_size = 5
# 输出层维度为1
output_size = 1
 
# 定义网络
model = Model_MLP_L2(input_size=input_size, hidden_size=hidden_size, output_size=output_size)
 
# 损失函数
loss_fn = BinaryCrossEntropyLoss(model)
 
# 优化器
learning_rate = 0.2
optimizer = BatchGD(learning_rate, model)
 
# 评价方法
metric = accuracy
 
# 实例化RunnerV2_1类,并传入训练配置
runner = RunnerV2_1(model, optimizer, metric, loss_fn)
 
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=epoch_num, log_epochs=50, save_dir=model_saved_dir)

运行结果:

[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.16875
[Train] epoch: 0/1000, loss: 0.7350932955741882
[Evaluate] best accuracy performence has been updated: 0.16875 --> 0.17500
[Evaluate] best accuracy performence has been updated: 0.17500 --> 0.18750
[Evaluate] best accuracy performence has been updated: 0.18750 --> 0.20000
[Evaluate] best accuracy performence has been updated: 0.20000 --> 0.21250
[Evaluate] best accuracy performence has been updated: 0.21250 --> 0.22500
[Evaluate] best accuracy performence has been updated: 0.22500 --> 0.25000
[Evaluate] best accuracy performence has been updated: 0.25000 --> 0.31250
[Evaluate] best accuracy performence has been updated: 0.31250 --> 0.37500
[Evaluate] best accuracy performence has been updated: 0.37500 --> 0.43750
[Evaluate] best accuracy performence has been updated: 0.43750 --> 0.46250
[Evaluate] best accuracy performence has been updated: 0.46250 --> 0.48125
[Evaluate] best accuracy performence has been updated: 0.48125 --> 0.49375
[Evaluate] best accuracy performence has been updated: 0.49375 --> 0.51250
[Evaluate] best accuracy performence has been updated: 0.51250 --> 0.55625
[Evaluate] best accuracy performence has been updated: 0.55625 --> 0.60625
[Evaluate] best accuracy performence has been updated: 0.60625 --> 0.61875
[Evaluate] best accuracy performence has been updated: 0.61875 --> 0.63750
[Evaluate] best accuracy performence has been updated: 0.63750 --> 0.65000
[Evaluate] best accuracy performence has been updated: 0.65000 --> 0.66250
[Evaluate] best accuracy performence has been updated: 0.66250 --> 0.66875
[Evaluate] best accuracy performence has been updated: 0.66875 --> 0.67500
[Evaluate] best accuracy performence has been updated: 0.67500 --> 0.68125
[Evaluate] best accuracy performence has been updated: 0.68125 --> 0.68750
[Evaluate] best accuracy performence has been updated: 0.68750 --> 0.69375
[Evaluate] best accuracy performence has been updated: 0.69375 --> 0.70000
[Evaluate] best accuracy performence has been updated: 0.70000 --> 0.71250
[Evaluate] best accuracy performence has been updated: 0.71250 --> 0.71875
[Train] epoch: 50/1000, loss: 0.664116382598877
[Evaluate] best accuracy performence has been updated: 0.71875 --> 0.72500
[Evaluate] best accuracy performence has been updated: 0.72500 --> 0.73750
[Evaluate] best accuracy performence has been updated: 0.73750 --> 0.74375
[Evaluate] best accuracy performence has been updated: 0.74375 --> 0.75000
[Evaluate] best accuracy performence has been updated: 0.75000 --> 0.76250
[Evaluate] best accuracy performence has been updated: 0.76250 --> 0.76875
[Evaluate] best accuracy performence has been updated: 0.76875 --> 0.78125
[Evaluate] best accuracy performence has been updated: 0.78125 --> 0.79375
[Evaluate] best accuracy performence has been updated: 0.79375 --> 0.80625
[Evaluate] best accuracy performence has been updated: 0.80625 --> 0.81250
[Train] epoch: 100/1000, loss: 0.5949881076812744
[Evaluate] best accuracy performence has been updated: 0.81250 --> 0.81875
[Evaluate] best accuracy performence has been updated: 0.81875 --> 0.82500
[Evaluate] best accuracy performence has been updated: 0.82500 --> 0.83125
[Evaluate] best accuracy performence has been updated: 0.83125 --> 0.83750
[Train] epoch: 150/1000, loss: 0.5277273058891296
[Train] epoch: 200/1000, loss: 0.485870361328125
[Train] epoch: 250/1000, loss: 0.46499910950660706
[Train] epoch: 300/1000, loss: 0.4550503194332123
[Train] epoch: 350/1000, loss: 0.45022842288017273
[Train] epoch: 400/1000, loss: 0.44782382249832153
[Train] epoch: 450/1000, loss: 0.44659096002578735
[Evaluate] best accuracy performence has been updated: 0.83750 --> 0.84375
[Train] epoch: 500/1000, loss: 0.44594064354896545
[Evaluate] best accuracy performence has been updated: 0.84375 --> 0.85000
[Evaluate] best accuracy performence has been updated: 0.85000 --> 0.85625
[Train] epoch: 550/1000, loss: 0.44558531045913696
[Train] epoch: 600/1000, loss: 0.4453815519809723
[Evaluate] best accuracy performence has been updated: 0.85625 --> 0.86250
[Train] epoch: 650/1000, loss: 0.44525671005249023
[Train] epoch: 700/1000, loss: 0.4451737403869629
[Train] epoch: 750/1000, loss: 0.4451136589050293
[Train] epoch: 800/1000, loss: 0.4450666606426239
[Train] epoch: 850/1000, loss: 0.4450274407863617
[Train] epoch: 900/1000, loss: 0.4449935853481293
[Train] epoch: 950/1000, loss: 0.44496336579322815

可视化观察训练集与验证集的损失函数变化情况。

plt.figure()
plt.plot(range(epoch_num), runner.train_loss, color="#e4007f", label="Train loss")
plt.plot(range(epoch_num), runner.dev_loss, color="#f19ec2", linestyle='--', label="Dev loss")
plt.xlabel("epoch", fontsize='large')
plt.ylabel("loss", fontsize='large')
plt.legend(fontsize='x-large')
plt.savefig('fw-loss2.pdf')
plt.show()

运行结果:
在这里插入图片描述

4.2.7 性能评价

使用测试集对训练中的最优模型进行评价,观察模型的评价指标。

# 加载训练好的模型
runner.load_model(model_saved_dir)
# 在测试集上对模型进行评价
score, loss = runner.evaluate([X_test, y_test])
 
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))

运行结果:

[Test] score/loss: 0.7850/0.4368

对结果进行可视化:

import math
 
# 均匀生成40000个数据点
x1, x2 = torch.meshgrid(torch.linspace(-math.pi, math.pi, 200), torch.linspace(-math.pi, math.pi, 200))
x = torch.stack([torch.flatten(x1), torch.flatten(x2)], dim=1)
 
# 预测对应类别
y = runner.predict(x)
y = torch.squeeze(torch.as_tensor((y>=0.5),dtype=torch.float32),dim=-1)
 
# 绘制类别区域
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(x[:,0].tolist(), x[:,1].tolist(), c=y.tolist(), cmap=plt.cm.Spectral)
 
plt.scatter(X_train[:, 0].tolist(), X_train[:, 1].tolist(), marker='*', c=torch.squeeze(y_train,dim=-1).tolist())
plt.scatter(X_dev[:, 0].tolist(), X_dev[:, 1].tolist(), marker='*', c=torch.squeeze(y_dev,dim=-1).tolist())
plt.scatter(X_test[:, 0].tolist(), X_test[:, 1].tolist(), marker='*', c=torch.squeeze(y_test,dim=-1).tolist())

运行结果:
在这里插入图片描述

【思考题】对比

3.1 基于Logistic回归的二分类任务和4.2 基于前馈神经网络的二分类任务谈谈自己的看法
采用logistic回归解决分类问题,大致可以分为两个步骤:
1.分类,采用逻辑回归公式实现分类
2.评估分类效果并调整w,b值
可以采用成本函数,值得注意的是损失函数是衡量单一样本的,成本函数是整个样本集。同时,为使损失函数值最小,可以使用梯度下降算法,不断更新w,b的值,其中,涉及内容有学习率,求导(变化率)。
单层前馈神经网络是最简单的一种人工神经网络,其只包含一个输出层,输出层上节点的值(输出值)通过输入值乘以权重值直接得到。取出其中一个元进行讨论,其输入到输出的变换关系为在这里插入图片描述
前馈神经网络当隐藏层维度较低的时候和Logistic回归和时间用时差不多但是一但神经元多较多,在相同数据集的情况下,用时差距就很明显了。和前面的Logistic回归相比,神经网络因为有了激活函数的存在,成了一个非线性分类模型,所以神经网络的分类更复杂。

总结

这次实验是基于前馈神经网络的二分类任务,搭建了一个简单的两层前馈神经网络,了解到在一定范围内noise值越小弯月形状越明显,,有很多跟前面的实验是重合的,但还是需要再来一遍的,还有基于Logistic回归的二分类任务和基于前馈神经网络的二分类任务的对比,还是前馈神经网络更好一点。

参考文章:
nn.Linear
注意力机制
logistic回归实现二分类
前馈神经网络

修正

将noise设置为0:

X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0)

在这里插入图片描述
将noise设置为0.2:

X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.2)

在这里插入图片描述
可以看出如果noise设置的过大,这会使得原本弯月数据集样本点过于分散,表现不出来数据集原本的弯月特征。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值