class RectScale(object)利用双线性插值法将图像调整到规定尺寸、class RandomSizedRectCrop(object)随机尺寸的矩形裁剪再利用双线性插值法将图像调整到规定尺寸、class RandomErasing(object)随机擦除
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler)根据step的学习率调整
transforms_list训练数据集的transform、test_transforms_list测试数据集的transform
class FeatureEmbedder(nn.Module)定义了特征图整成特征向量同时权重初始化、class IdClassifier(nn.Module)定义了分类器同时权重初始化、def weights_init_kaiming(m)、def weights_init_classifier(m)、class Baseline(nn.Module)调用resnet,同时加载参数:
def test(feature_generators, queryloader, galleryloader, use_gpu = True, ranks=[1, 5, 10, 20]):测试阶段(提取query特征和gallery特征,并进行CMC和MAP和rank的计算)
def evaluate(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50)
class SYSU_triplet_dataset(Dataset)、class SYSU_eval_datasets(object)、class Image_dataset(Dataset)
class expATLoss()、class CrossEntropyLabelSmoothLoss(nn.Module)
class Bottleneck(nn.Module)、class ResNet(nn.Module)