代码7

在这里插入图片描述
class RectScale(object)利用双线性插值法将图像调整到规定尺寸、class RandomSizedRectCrop(object)随机尺寸的矩形裁剪再利用双线性插值法将图像调整到规定尺寸、class RandomErasing(object)随机擦除
在这里插入图片描述
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler)根据step的学习率调整
在这里插入图片描述
transforms_list训练数据集的transform、test_transforms_list测试数据集的transform
在这里插入图片描述
class FeatureEmbedder(nn.Module)定义了特征图整成特征向量同时权重初始化、class IdClassifier(nn.Module)定义了分类器同时权重初始化、def weights_init_kaiming(m)、def weights_init_classifier(m)、class Baseline(nn.Module)调用resnet,同时加载参数:
在这里插入图片描述
def test(feature_generators, queryloader, galleryloader, use_gpu = True, ranks=[1, 5, 10, 20]):测试阶段(提取query特征和gallery特征,并进行CMC和MAP和rank的计算)
def evaluate(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50)
在这里插入图片描述
class SYSU_triplet_dataset(Dataset)、class SYSU_eval_datasets(object)、class Image_dataset(Dataset)
在这里插入图片描述
class expATLoss()、class CrossEntropyLabelSmoothLoss(nn.Module)
在这里插入图片描述
class Bottleneck(nn.Module)、class ResNet(nn.Module)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值