如何安装CPU版本的pytorch:首先,利用清华镜像下载anaconda,注意:尽量不要复制下载的anaconda.其次在pycharm官网上下载pycharm,安装专业版,利用jetbrains-agent压缩文件和安装参数进行破解,然后利用anaconda prompt 找到python的目录,为pycharm安装python解释器。最后配置清华镜像:(1)先在base环境执行命令:conda config --set show_channel_urls yes
(2)执行完上一条的命令后会在C:\users\18059(用户名)目录下生成一个.condarc文件,然后清空该记事本打开的文件,复制清华源中的代码到该被清空的文件,此时即可配置好清华源镜像详见(网站:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/)
4.创建新的虚拟环境
Eg:conda create -n pytorch1 python=3.7 创建一个名为pytorch的虚拟工作环境
conda remove pytorch 删除一个名为pytorch的虚拟工作环境
5.创建完成虚拟环境后激活:conda activate pytorch 激活名为pytorch的虚拟环境
6.然后去pytorch官网找需要的版本对应的conda命令
将其输入至powershell中即可配置成功
二、配置工作环境过程中可能会遇到的一些安装库的命令
pip install numpy 安装numpy库
pip uninstall numpy 卸载numpy库
conda install numpy
conda uninstall numpy 同上
三、Pip或者conda不成功时
(1)下载wheel文件放到powershell显示的目录下,然后pip install name.whl
(2)下载tar.bz文件,用conda clean --packages –tarballs
conda install --use-local name.tar.bz2
注:建议使用 pip 安装
国内源一定要是https域名的,很多博客的都是http的。
清华:https://pypi.tuna.tsinghua.edu.cn/simple
阿里云:https://mirrors.aliyun.com/pypi/simple/
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
华中理工大学:https://pypi.hustunique.com/
山东理工大学:https://pypi.sdutlinux.org/
豆瓣:https://pypi.douban.com/simple/
CUDA是一种通用计算架构,能利用GPU的并行计算引擎。CUDNN是用于深度神经网络的GPU加速库。在安装GPU版本pytorch之前先安装对应版本的CUDA和CUDNN。我的显卡是GTX1070MAX-Q。查看CUDA的最高支持版本。我的是
安装GPU版本的pytorch只需要再安装cuda(安装和自已显卡对应版本的驱动),再安装cudnn(将里面的文件复制到对应的文件夹下).其他的操作都一样。对于GPU的安装可参考:https://blog.csdn.net/u011995719/article/details/54411720。