新技术快读,旧知拾遗与联系
文章平均质量分 77
以简讯形式概括新技术思路,并与既有知识与问题融会提纲
吐蕃番僧-鸠摩罗智
交流合作timestaff@163.com
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
研发笔记(六续)从词性标注到DNA序列元件
这个特殊的有向图就是lattice图,找到从第一个字到最后一个字的概率最大路径即可以找到最佳分词,与上篇文章相同的原理,概率最大可以转化为负对数相加,即路径最短,如果穷举路径则计算上不可接受。'维特比算法是针对一种特殊的有向图' ----->BMEBESBESSBESBME 分词为:‘维特比/算法/是/针对/一/种/特殊/的/有向图’例如:'我喜欢蔬菜' --正确词性标注为------> SBEBE 则分词为 '我/喜欢/蔬菜'当然实际如何分词是正确的是根据词库得到的,是可以调整的。原创 2025-12-22 12:54:00 · 191 阅读 · 0 评论 -
欧拉图与哈密顿(Hamilton)图--到序列组装
生物大数据的问题促使 越来越多的文章和工具产品被开发出来"The volume of the data, paradoxically, is the main inhibitor of us actually using the data"...track drug-resistance genes in bacterial strains that live in subway systems across major urban centres。类似的还有Logan Pathogens 等原创 2025-08-17 23:39:39 · 443 阅读 · 0 评论 -
Mixture-of-Recursions, tokenization, embedding
于是让这个词汇表的初编码的热键向量乘以987000×embed size 的矩阵,做了映射之后其在空间的位置即可反应其语义的相似性,并且原来需要987000维向量编码每个字也变成了稠密矩阵中embed size长度的向量作为该字的代表。注意层,但每一层都有独立的参数导致大量的信息和计算的冗余,于是发展出了递归Transformers架构,对中间层使用递归策略,让多个递归层共享使用相同的参数。自注意力机制的核心是嵌入了位置向量的Q,K,V矩阵,transformer就是通过堆叠多个固定深度的自。原创 2025-07-31 15:35:40 · 433 阅读 · 0 评论
分享