目录
3.3.2 方案二:ffmpeg-python库使用ffmpeg
一、引言
上一篇对Whisper原理和实战进行了讲解,第7次拿到了热榜第一🏆。今天,我们在Whisper的基础上,引入ffmpeg工具对视频的音频进行抽取,再使用Whisper将音频转为文本,通过二阶段法实现视频内容的理解。
二、FFmpeg工具介绍
2.1 什么是FFmpeg
FFmpeg是一个开源的跨平台多媒体处理工具,它可以处理音频/视频数据,包括转码、转换格式、分割、合并等操作。
2.2 FFmpeg核心原理
- 多媒体流的解析:FFmpeg能够解析各种常见的多媒体格式,包括MP4, MKV, AVI, MP3, OGG等,并将其转换为FFmpeg内部的统一表示格式,也就是所谓的复用格式(Container Format)和编码格式(Codec)。
- 多媒体流的编码和解码:FFmpeg可以使用不同的编解码器来编码和解码音频/视频数据。例如,它可以使用H.264编码来压缩视频数据,使用AAC编码来压缩音频数据。
- 过滤器(Filters):FFmpeg提供了一个强大的过滤器系统,可以用来处理视频和音频的各种效果,例如裁剪、裁切、旋转、缩放等。
- 流的复用和解复用:FFmpeg可以将多个音频/视频流合并为一个文件,也可以将一个文件分离成多个音频/视频流。
- 并行处理:FFmpeg利用多线程技术,可以并行处理多个任务,比如同时进行多个转码操作。
2.3 FFmpeg使用示例
ffmpeg -i input.mp4 -vn -ar 44100 -ac 2 -ab 192k -f mp3 output.mp3
- -i input.mp4 指定输入文件。
- -vn 表示禁用视频录制。
- -ar 44100 设置采样率为44.1kHz。
- -ac 2 设置声道数为2(立体声)。
- -ab 192k 设置比特率为192k。
- -f mp3 设置输出格式为MP3。
- output.mp3 是输出文件的名称。
三、FFmpeg+Whisper二阶段法视频理解实战
3.1 FFmpeg安装
由于FFmpeg不支持pip安装,所以需要使用apt-get
sudo apt-get update && apt-get install ffmpeg
3.2 Whisper模型下载
这里与上一篇一样,还是采用transformers的pipeline,首先创建conda环境以及安装transformers
创建并激活conda环境:
conda create -n video2text python=3.11 conda activate video2text
安装transformers库:
pip install transformers -i https://mirrors.cloud.tencent.com/pypi/simple
基于transformers的pipeline会自动进行模型下载,当然,如果您的网速不行,请替换HF_ENDPOINT为国内镜像。
-
os.environ[
"HF_ENDPOINT"] =
"https://hf-mirror.com"
-
-
transcriber = pipeline(task=
"automatic-speech-recognition", model=
"openai/whisper-medium")
不同尺寸模型参数量、多语言支持情况、需要现存大小以及推理速度如下
3.3 FFmpeg抽取视频的音频
3.3.1 方案一:命令行方式使用ffmpeg
首先将ffmpeg命令放入ffmpeg_command,之后采用subprocess库的run方法执行ffmpeg_command内的命令。
输入的视频文件为input_file,输出的音频文件为output_file。
-
import subprocess
-
def
extract_audio(
input_file, output_file):
-
"""
-
使用FFmpeg从MP4文件中提取音频并保存为MP3格式。
-
-
:param input_file: 输入的MP4文件路径
-
:param output_file: 输出的MP3文件路径
-
"""
-
# 构建FFmpeg命令
-
ffmpeg_command = [
-
'ffmpeg',
'-i', input_file,
'-vn',
'-acodec',
'libmp3lame', output_file
-
]
-
-
try:
-
# 执行命令
-
subprocess.run(ffmpeg_command, check=
True)
-
print(
f"音频已成功从 {input_file} 提取到 {output_file}")
-
except subprocess.CalledProcessError
as e:
-
print(
f"处理错误: {e}")
3.3.2 方案二:ffmpeg-python库使用ffmpeg
首先安装ffmpeg-python:
pip install ffmpeg-python -i https://mirrors.cloud.tencent.com/pypi/simple
引入ffmpeg库,一行代码完成音频转文本
-
import ffmpeg
-
def
extract_audio(
input_file, output_file):
-
"""
-
使用FFmpeg从MP4文件中提取音频并保存为MP3格式。
-
-
:param input_file: 输入的MP4文件路径
-
:param output_file: 输出的MP3文件路径
-
"""
-
-
try:
-
# 执行命令
-
ffmpeg.
input(input_file).output(output_file, acodec=
"libmp3lame", ac=
2, ar=
"44100").run()
-
print(
f"音频已成功从 {input_file} 提取到 {output_file}")
-
except subprocess.CalledProcessError
as e:
-
print(
f"处理错误: {e}")
3.4 Whisper将音频转为文本
-
from transformers
import pipeline
-
def
speech2text(
speech_file):
-
transcriber = pipeline(task=
"automatic-speech-recognition", model=
"openai/whisper-medium")
-
text_dict = transcriber(speech_file)
-
return text_dict
这里采用pipeline完成openai/whisper-medium的模型下载以及实例化,将音频文件输入实例化的transcriber对象即刻得到文本。
3.5 视频理解完整代码
-
import os
-
os.environ[
"HF_ENDPOINT"] =
"https://hf-mirror.com"
-
os.environ[
"CUDA_VISIBLE_DEVICES"] =
"2"
-
os.environ[
"TF_ENABLE_ONEDNN_OPTS"] =
"0"
-
-
from transformers
import pipeline
-
import subprocess
-
-
def
speech2text(
speech_file):
-
transcriber = pipeline(task=
"automatic-speech-recognition", model=
"openai/whisper-medium")
-
text_dict = transcriber(speech_file)
-
return text_dict
-
def
extract_audio(
input_file, output_file):
-
"""
-
使用FFmpeg从MP4文件中提取音频并保存为MP3格式。
-
-
:param input_file: 输入的MP4文件路径
-
:param output_file: 输出的MP3文件路径
-
"""
-
# 构建FFmpeg命令
-
ffmpeg_command = [
-
'ffmpeg',
'-i', input_file,
'-vn',
'-acodec',
'libmp3lame', output_file
-
]
-
-
try:
-
# 执行命令
-
subprocess.run(ffmpeg_command, check=
True)
-
print(
f"音频已成功从 {input_file} 提取到 {output_file}")
-
except subprocess.CalledProcessError
as e:
-
print(
f"处理错误: {e}")
-
-
-
-
import argparse
-
import json
-
def
main():
-
parser = argparse.ArgumentParser(description=
"视频转文本")
-
parser.add_argument(
"--video",
"-v",
type=
str,
help=
"输入视频文件路径")
-
parser.add_argument(
"--audio",
"-a",
type=
str,
help=
"输出音频文件路径")
-
-
args = parser.parse_args()
-
print(args)
-
-
extract_audio(args.video, args.audio)
-
text_dict = speech2text(args.audio)
-
print(
"视频内的文本是:\n" + text_dict[
"text"])
-
#print("视频内的文本是:\n"+ json.dumps(text_dict,indent=4))
-
-
if __name__==
"__main__":
-
main()
输出为:
3.6 视频理解模型部署
如果想将该服务部署成语音识别API服务,可以参考之前的FastAPI相关文章。
四、总结
本文在上一篇音频转文本的基础上,引入了视频转音频,这样可以采用二阶段法:先提取音频,再音频转文字的方法完成视频内容理解。之后可以配上LLM对视频内提取的文本进行一系列应用。
希望可以帮到您,如果觉得有帮助的话,期待您的三连+投票!
如果您还有时间,可以看看我的其他文章:
《AI—工程篇》
AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效
AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署
AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署
AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署
AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署
《AI—模型篇》
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战
AI智能体研发之路-模型篇(四):一文入门pytorch开发
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络
AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型
AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战
AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
AI智能体研发之路-模型篇(十):【机器学习】Qwen2大模型原理、训练及推理部署实战
《AI—Transformers应用》
【AI大模型】Transformers大模型库(一):Tokenizer
【AI大模型】Transformers大模型库(二):AutoModelForCausalLM
【AI大模型】Transformers大模型库(三):特殊标记(special tokens)
【AI大模型】Transformers大模型库(四):AutoTokenizer
【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构
【AI大模型】Transformers大模型库(六):torch.cuda.OutOfMemoryError: CUDA out of memory解决