【机器学习】FFmpeg+Whisper:二阶段法视频理解(video-to-text)大模型实战_whisper模型

目录

一、引言

二、FFmpeg工具介绍

2.1 什么是FFmpeg

2.2 FFmpeg核心原理

2.3 FFmpeg使用示例

三、FFmpeg+Whisper二阶段法视频理解实战

3.1 FFmpeg安装

3.2 Whisper模型下载

3.3 FFmpeg抽取视频的音频

3.3.1 方案一:命令行方式使用ffmpeg

3.3.2 方案二:ffmpeg-python库使用ffmpeg

3.4 Whisper将音频转为文本

3.5 视频理解完整代码

3.6 视频理解模型部署 

四、总结


一、引言

上一篇对Whisper原理和实战进行了讲解,第7次拿到了热榜第一🏆。今天,我们在Whisper的基础上,引入ffmpeg工具对视频的音频进行抽取,再使用Whisper将音频转为文本,通过二阶段法实现视频内容的理解。

二、FFmpeg工具介绍

2.1 什么是FFmpeg

FFmpeg是一个开源的跨平台多媒体处理工具,它可以处理音频/视频数据,包括转码、转换格式、分割、合并等操作。

2.2 FFmpeg核心原理

  • 多媒体流的解析:FFmpeg能够解析各种常见的多媒体格式,包括MP4, MKV, AVI, MP3, OGG等,并将其转换为FFmpeg内部的统一表示格式,也就是所谓的复用格式(Container Format)和编码格式(Codec)。
  • 多媒体流的编码和解码:FFmpeg可以使用不同的编解码器来编码和解码音频/视频数据。例如,它可以使用H.264编码来压缩视频数据,使用AAC编码来压缩音频数据。
  • 过滤器(Filters):FFmpeg提供了一个强大的过滤器系统,可以用来处理视频和音频的各种效果,例如裁剪、裁切、旋转、缩放等。
  • 流的复用和解复用:FFmpeg可以将多个音频/视频流合并为一个文件,也可以将一个文件分离成多个音频/视频流。
  • 并行处理:FFmpeg利用多线程技术,可以并行处理多个任务,比如同时进行多个转码操作。

2.3 FFmpeg使用示例

ffmpeg -i input.mp4 -vn -ar 44100 -ac 2 -ab 192k -f mp3 output.mp3
  
  
  • -i input.mp4 指定输入文件。
  • -vn 表示禁用视频录制。
  • -ar 44100 设置采样率为44.1kHz。
  • -ac 2 设置声道数为2(立体声)。
  • -ab 192k 设置比特率为192k。
  • -f mp3 设置输出格式为MP3。
  • output.mp3 是输出文件的名称。 

三、FFmpeg+Whisper二阶段法视频理解实战

3.1 FFmpeg安装

由于FFmpeg不支持pip安装,所以需要使用apt-get

sudo apt-get update && apt-get install ffmpeg
  
  

3.2 Whisper模型下载

这里与上一篇一样,还是采用transformers的pipeline,首先创建conda环境以及安装transformers

创建并激活conda环境:


  
  
  1. conda create -n video2text python=3.11
  2. conda activate video2text

安装transformers库: 

pip install transformers -i https://mirrors.cloud.tencent.com/pypi/simple
  
  

基于transformers的pipeline会自动进行模型下载,当然,如果您的网速不行,请替换HF_ENDPOINT为国内镜像。


  
  
  1. os.environ[ "HF_ENDPOINT"] = "https://hf-mirror.com"
  2. transcriber = pipeline(task= "automatic-speech-recognition", model= "openai/whisper-medium")

 不同尺寸模型参数量、多语言支持情况、需要现存大小以及推理速度如下

3.3 FFmpeg抽取视频的音频

3.3.1 方案一:命令行方式使用ffmpeg

首先将ffmpeg命令放入ffmpeg_command,之后采用subprocess库的run方法执行ffmpeg_command内的命令。

输入的视频文件为input_file,输出的音频文件为output_file。


  
  
  1. import subprocess
  2. def extract_audio( input_file, output_file):
  3. """
  4. 使用FFmpeg从MP4文件中提取音频并保存为MP3格式。
  5. :param input_file: 输入的MP4文件路径
  6. :param output_file: 输出的MP3文件路径
  7. """
  8. # 构建FFmpeg命令
  9. ffmpeg_command = [
  10. 'ffmpeg', '-i', input_file, '-vn', '-acodec', 'libmp3lame', output_file
  11. ]
  12. try:
  13. # 执行命令
  14. subprocess.run(ffmpeg_command, check= True)
  15. print( f"音频已成功从 {input_file} 提取到 {output_file}")
  16. except subprocess.CalledProcessError as e:
  17. print( f"处理错误: {e}")
3.3.2 方案二:ffmpeg-python库使用ffmpeg

首先安装ffmpeg-python:

 pip install ffmpeg-python -i  https://mirrors.cloud.tencent.com/pypi/simple
  
  

 引入ffmpeg库,一行代码完成音频转文本


  
  
  1. import ffmpeg
  2. def extract_audio( input_file, output_file):
  3. """
  4. 使用FFmpeg从MP4文件中提取音频并保存为MP3格式。
  5. :param input_file: 输入的MP4文件路径
  6. :param output_file: 输出的MP3文件路径
  7. """
  8. try:
  9. # 执行命令
  10. ffmpeg. input(input_file).output(output_file, acodec= "libmp3lame", ac= 2, ar= "44100").run()
  11. print( f"音频已成功从 {input_file} 提取到 {output_file}")
  12. except subprocess.CalledProcessError as e:
  13. print( f"处理错误: {e}")

3.4 Whisper将音频转为文本


  
  
  1. from transformers import pipeline
  2. def speech2text( speech_file):
  3. transcriber = pipeline(task= "automatic-speech-recognition", model= "openai/whisper-medium")
  4. text_dict = transcriber(speech_file)
  5. return text_dict

这里采用pipeline完成openai/whisper-medium的模型下载以及实例化,将音频文件输入实例化的transcriber对象即刻得到文本。

3.5 视频理解完整代码


  
  
  1. import os
  2. os.environ[ "HF_ENDPOINT"] = "https://hf-mirror.com"
  3. os.environ[ "CUDA_VISIBLE_DEVICES"] = "2"
  4. os.environ[ "TF_ENABLE_ONEDNN_OPTS"] = "0"
  5. from transformers import pipeline
  6. import subprocess
  7. def speech2text( speech_file):
  8. transcriber = pipeline(task= "automatic-speech-recognition", model= "openai/whisper-medium")
  9. text_dict = transcriber(speech_file)
  10. return text_dict
  11. def extract_audio( input_file, output_file):
  12. """
  13. 使用FFmpeg从MP4文件中提取音频并保存为MP3格式。
  14. :param input_file: 输入的MP4文件路径
  15. :param output_file: 输出的MP3文件路径
  16. """
  17. # 构建FFmpeg命令
  18. ffmpeg_command = [
  19. 'ffmpeg', '-i', input_file, '-vn', '-acodec', 'libmp3lame', output_file
  20. ]
  21. try:
  22. # 执行命令
  23. subprocess.run(ffmpeg_command, check= True)
  24. print( f"音频已成功从 {input_file} 提取到 {output_file}")
  25. except subprocess.CalledProcessError as e:
  26. print( f"处理错误: {e}")
  27. import argparse
  28. import json
  29. def main():
  30. parser = argparse.ArgumentParser(description= "视频转文本")
  31. parser.add_argument( "--video", "-v", type= str, help= "输入视频文件路径")
  32. parser.add_argument( "--audio", "-a", type= str, help= "输出音频文件路径")
  33. args = parser.parse_args()
  34. print(args)
  35. extract_audio(args.video, args.audio)
  36. text_dict = speech2text(args.audio)
  37. print( "视频内的文本是:\n" + text_dict[ "text"])
  38. #print("视频内的文本是:\n"+ json.dumps(text_dict,indent=4))
  39. if __name__== "__main__":
  40. main()

输出为:

 

3.6 视频理解模型部署 

如果想将该服务部署成语音识别API服务,可以参考之前的FastAPI相关文章

四、总结

本文在上一篇音频转文本的基础上,引入了视频转音频,这样可以采用二阶段法:先提取音频,再音频转文字的方法完成视频内容理解。之后可以配上LLM对视频内提取的文本进行一系列应用。

希望可以帮到您,如果觉得有帮助的话,期待您的三连+投票!

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

AI智能体研发之路-模型篇(十):【机器学习】Qwen2大模型原理、训练及推理部署实战

《AI—Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer

【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构

【AI大模型】Transformers大模型库(六):torch.cuda.OutOfMemoryError: CUDA out of memory解决

【AI大模型】Transformers大模型库(七):单机多卡推理之device_map

【AI大模型】Transformers大模型库(八):大模型微调之LoraConfig 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值