- 博客(131)
- 收藏
- 关注
原创 【NLP】33. Pinecone + OpenAI :构建自定义语义搜索系统
{"id": "doc1", "text": "老虎是一种主要生活在亚洲的肉食动物"},{"id": "doc2", "text": "大象是陆地上最大的动物,有长鼻和大耳朵"},{"id": "doc3", "text": "保龄羊是生活在欧洲高原的羊类动物"},{"id": "doc4", "text": "老鼠是一种常见小型动物,有很强的生存力"}
2025-05-05 14:19:56
381
原创 【NLP】32. Transformers (HuggingFace Pipelines 实战)
本教程基于 Hugging Face 的 库,展示如何使用预训练模型完成以下任务:
2025-05-05 14:06:56
412
原创 【NLP】 31. Retrieval-Augmented Generation(RAG):KNN-LM, RAG、REALM、RETRO、FLARE
KNN-LM, RAG、REALM、RETRO、FLARE
2025-05-05 13:29:31
694
原创 【NLP】30. 深入理解 In-Context Learning 的核心机制与策略
深入理解 In-Context Learning 的核心机制与策略
2025-05-05 12:45:05
527
原创 【NLP】 28. 语言模型的评估方式:MRR, PERPLEXITY, BLEU, WER从困惑度到实际效果
语言模型的评估方式:MRR, PERPLEXITY, BLEU, WER从困惑度到实际效果
2025-05-05 11:05:42
1249
原创 【NLP】 26. 语言模型原理与概率建模方法详解(Language Models)
语言模型(Language Model, LM)是自然语言处理的核心组件之一。其任务是,反映这段文本在自然语言中的“合理性”或“常见性”。在本章节中,我们将从基本定义出发,深入讲解语言模型的建模方法(包括 n-gram 模型、链式法则分解、Markov 假设等)、概率计算技巧、数值稳定性对策,以及各类方法的优缺点对比。
2025-05-05 10:37:54
967
原创 【统计方法】模型子集选择:R2,BIC,Mallows Cp, 岭回归、Lasso、Elastic Net
【统计方法】模型子集选择:R2,BIC,Mallows Cp, 岭回归、Lasso、Elastic Net
2025-04-30 13:35:59
807
原创 【统计方法】Bootstrap, 缺失值机制与处理,kappa指标,类别不均衡:采样方法介绍
【统计方法】Bootstrap, 缺失值机制与处理,kappa指标,类别不均衡:采样方法介绍
2025-04-30 07:50:44
778
原创 【统计方法】交叉验证:Resampling, nested 交叉验证等策略 【含R语言】
【统计方法】交叉验证:Resampling, nested 交叉验证等策略 【含R语言】
2025-04-29 23:52:55
1396
原创 【NLP】25.python实现点积注意力,加性注意力,Decoder(解码器)与 Attention
python实现点积注意力,加性注意力,Decoder(解码器)与 Attention
2025-04-14 14:45:12
407
原创 【NLP】 21. Transformer整体流程概述 Encoder 与 Decoder架构对比
Transformer整体流程概述 Encoder 与 Decoder架构对比
2025-04-14 07:16:33
1016
原创 【NLP】 19. Tokenlisation 分词 BPE, WordPiece, Unigram/SentencePiece
tokenlisation
2025-04-13 23:23:20
804
1
原创 【NLP】 17. 上下文显示Contextual Repressentations,word2vec,glove,fasttext,多义词,双向RNN与模型微调
上下文显示Contextual Repressentations,word2vec,glove,fasttext,多义词,双向RNN与模型微调
2025-04-13 21:01:47
924
原创 【NLP】16. NLP推理方法重点回顾 -- 52道多选题
在动态规划中,发射概率(emission probabilities)(A)用于表示词对标签的概率,转移概率(transition probabilities)(B)表示前后标签的转换概率。动态规划(DP)可确保找到全局最优解(A),而贪心算法仅基于局部最优选择,可能导致次优解(C)。优势在于穷举搜索能考虑所有可能的结构,从而保证找到全局最优解(A)和保证输出的结构完整性(C),但它计算量巨大,不适合长句,且计算效率低(B和D错误)。选项C和D均不正确。它并不保证最优(C),也不直接调整当前词概率(D)。
2025-03-31 13:00:09
634
原创 【NLP】15. NLP推理方法详解 --- 动态规划:序列标注,语法解析,共同指代
NLP推理方法详解 --- 动态规划:序列标注,语法解析,共同指代
2025-03-31 00:39:44
731
原创 【NLP】14. NLP推理方法详解 --- beam search 束搜索 以及 graph search 图搜索
beam search 束搜索 以及 graph search 图搜索
2025-03-30 22:04:11
1301
原创 【R语言】lm线性回归及输出含义,置信区间,预测,R方,ggplot 拟合直线
【R语言】lm线性回归及输出含义,置信区间,预测,R方,ggplot 拟合直线
2025-03-18 23:03:06
1259
原创 【R语言】 文件,vector, matrix,dataframe 的基本操作
【R语言】 文件,vector, matrix,dataframe 的基本操作
2025-03-18 22:27:03
464
原创 均方误差(Mean Squared Error, MSE,方差(Variance)、偏差的平方(Squared Bias)和误差的方差(Variance of Error)
均方误差(Mean Squared Error, MSE,方差(Variance)、偏差的平方(Squared Bias)和误差的方差(Variance of Error)
2025-03-18 20:02:11
608
原创 参数化方法 (Parametric Methods) 与 非参数化方法 (Non-parametric Methods),数据平滑
参数化方法 (Parametric Methods) 与 非参数化方法 (Non-parametric Methods),数据平滑
2025-03-18 15:49:38
946
原创 Statistical Learning 统计学习 :回归任务,线性回归,最小二乘法,标准误差,R方
Statistical Learning 统计学习 :回归任务,线性回归,最小二乘法,标准误差,R方
2025-03-18 15:37:58
1072
原创 【NLP】 11. 神经网络,线性模型,非线性模型,激活函数,感知器优化,正则化学习方法
神经网络,线性模型,非线性模型,激活函数,感知器优化,正则化学习方法
2025-03-17 11:26:02
1484
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人