自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(131)
  • 收藏
  • 关注

原创 【NLP】33. Pinecone + OpenAI :构建自定义语义搜索系统

{"id": "doc1", "text": "老虎是一种主要生活在亚洲的肉食动物"},{"id": "doc2", "text": "大象是陆地上最大的动物,有长鼻和大耳朵"},{"id": "doc3", "text": "保龄羊是生活在欧洲高原的羊类动物"},{"id": "doc4", "text": "老鼠是一种常见小型动物,有很强的生存力"}

2025-05-05 14:19:56 381

原创 【NLP】32. Transformers (HuggingFace Pipelines 实战)

本教程基于 Hugging Face 的 库,展示如何使用预训练模型完成以下任务:

2025-05-05 14:06:56 412

原创 【NLP】 31. Retrieval-Augmented Generation(RAG):KNN-LM, RAG、REALM、RETRO、FLARE

KNN-LM, RAG、REALM、RETRO、FLARE

2025-05-05 13:29:31 694

原创 【NLP】30. 深入理解 In-Context Learning 的核心机制与策略

深入理解 In-Context Learning 的核心机制与策略

2025-05-05 12:45:05 527

原创 【NLP】29. 高效训练与替代模型:让语言模型更轻、更快、更强

高效训练与替代模型:让语言模型更轻、更快、更强

2025-05-05 11:09:31 564

原创 【NLP】 28. 语言模型的评估方式:MRR, PERPLEXITY, BLEU, WER从困惑度到实际效果

语言模型的评估方式:MRR, PERPLEXITY, BLEU, WER从困惑度到实际效果

2025-05-05 11:05:42 1249

原创 【NLP】27. 语言模型训练以及模型选择:从预训练到下游任务

语言模型训练以及模型选择:从预训练到下游任务

2025-05-05 10:59:08 1171

原创 【NLP】 26. 语言模型原理与概率建模方法详解(Language Models)

语言模型(Language Model, LM)是自然语言处理的核心组件之一。其任务是,反映这段文本在自然语言中的“合理性”或“常见性”。在本章节中,我们将从基本定义出发,深入讲解语言模型的建模方法(包括 n-gram 模型、链式法则分解、Markov 假设等)、概率计算技巧、数值稳定性对策,以及各类方法的优缺点对比。

2025-05-05 10:37:54 967

原创 【统计方法】模型子集选择:R2,BIC,Mallows Cp, 岭回归、Lasso、Elastic Net

【统计方法】模型子集选择:R2,BIC,Mallows Cp, 岭回归、Lasso、Elastic Net

2025-04-30 13:35:59 807

原创 【统计方法】Bootstrap, 缺失值机制与处理,kappa指标,类别不均衡:采样方法介绍

【统计方法】Bootstrap, 缺失值机制与处理,kappa指标,类别不均衡:采样方法介绍

2025-04-30 07:50:44 778

原创 【统计方法】交叉验证:Resampling, nested 交叉验证等策略 【含R语言】

【统计方法】交叉验证:Resampling, nested 交叉验证等策略 【含R语言】

2025-04-29 23:52:55 1396

原创 【NLP】25.python实现点积注意力,加性注意力,Decoder(解码器)与 Attention

python实现点积注意力,加性注意力,Decoder(解码器)与 Attention

2025-04-14 14:45:12 407

原创 【NLP】24. spaCy 教程:自然语言处理核心操作指南(进阶)

spaCy 教程:自然语言处理核心操作指南(进阶)

2025-04-14 14:17:35 378

原创 【NLP】23.小结:选择60题

encoder decoder 选择60题

2025-04-14 13:54:27 939

原创 【NLP】 22. NLP 现代教程:Transformer的训练与应用全景解读

NLP 现代教程:Transformer的训练与应用全景解读

2025-04-14 07:19:39 740

原创 【NLP】 21. Transformer整体流程概述 Encoder 与 Decoder架构对比

Transformer整体流程概述 Encoder 与 Decoder架构对比

2025-04-14 07:16:33 1016

原创 【NLP】 20. Attention 和 self-attention

Attention 和 self-attention

2025-04-14 06:32:17 1066

原创 【NLP】 19. Tokenlisation 分词 BPE, WordPiece, Unigram/SentencePiece

tokenlisation

2025-04-13 23:23:20 804 1

原创 【NLP】18. Encoder 和 Decoder

Encoder 和 Decoder

2025-04-13 21:30:38 908

原创 【NLP】 17. 上下文显示Contextual Repressentations,word2vec,glove,fasttext,多义词,双向RNN与模型微调

上下文显示Contextual Repressentations,word2vec,glove,fasttext,多义词,双向RNN与模型微调

2025-04-13 21:01:47 924

原创 【统计方法】线性判别分析 (LDA)

线性判别分析 (LDA)

2025-04-02 14:37:45 1180

原创 【统计方法】降维方式;pca, t-sne, mds

降维方式

2025-04-02 13:48:01 756

原创 【统计方法】无监督学习中的聚类方法:K-mean和Hierarchical层次聚类

聚类方法

2025-04-02 09:55:17 714

原创 【NLP】16. NLP推理方法重点回顾 -- 52道多选题

在动态规划中,发射概率(emission probabilities)(A)用于表示词对标签的概率,转移概率(transition probabilities)(B)表示前后标签的转换概率。动态规划(DP)可确保找到全局最优解(A),而贪心算法仅基于局部最优选择,可能导致次优解(C)。优势在于穷举搜索能考虑所有可能的结构,从而保证找到全局最优解(A)和保证输出的结构完整性(C),但它计算量巨大,不适合长句,且计算效率低(B和D错误)。选项C和D均不正确。它并不保证最优(C),也不直接调整当前词概率(D)。

2025-03-31 13:00:09 634

原创 【NLP】15. NLP推理方法详解 --- 动态规划:序列标注,语法解析,共同指代

NLP推理方法详解 --- 动态规划:序列标注,语法解析,共同指代

2025-03-31 00:39:44 731

原创 【NLP】14. NLP推理方法详解 --- beam search 束搜索 以及 graph search 图搜索

beam search 束搜索 以及 graph search 图搜索

2025-03-30 22:04:11 1301

原创 【NLP】13. NLP推理方法详解 --- 穷举和贪心搜索

NLP推理方法详解 --- 穷举和贪心搜索

2025-03-30 21:01:53 1172

原创 【重点总结】 概率密度函数,极大似然估计, 参数模型与非参数模型

【重点总结】 概率密度函数,极大似然估计, 参数模型与非参数模型

2025-03-19 15:26:47 519

原创 【R语言】二项分布,正态分布,极大似然估计实现

【R语言】二项分布,正态分布,极大似然估计实现

2025-03-18 23:50:17 1215

原创 【R语言】lm线性回归及输出含义,置信区间,预测,R方,ggplot 拟合直线

【R语言】lm线性回归及输出含义,置信区间,预测,R方,ggplot 拟合直线

2025-03-18 23:03:06 1259

原创 【R语言】 文件,vector, matrix,dataframe 的基本操作

【R语言】 文件,vector, matrix,dataframe 的基本操作

2025-03-18 22:27:03 464

原创 【R语言】R 语法的特点 与 各种图形的绘制

R 语法的特点 与 图形绘制

2025-03-18 22:11:14 1171

原创 均方误差(Mean Squared Error, MSE,方差(Variance)、偏差的平方(Squared Bias)和误差的方差(Variance of Error)

均方误差(Mean Squared Error, MSE,方差(Variance)、偏差的平方(Squared Bias)和误差的方差(Variance of Error)

2025-03-18 20:02:11 608

原创 密度估计:参数与非参数

密度估计:参数与非参数

2025-03-18 19:59:28 688

原创 离散概率分布:正态分布,二项分布,连续分布,正态分布的性质

离散概率分布:正态分布,二项分布,连续分布,正态分布的性质

2025-03-18 19:52:12 1026

原创 参数化方法 (Parametric Methods) 与 非参数化方法 (Non-parametric Methods),数据平滑

参数化方法 (Parametric Methods) 与 非参数化方法 (Non-parametric Methods),数据平滑

2025-03-18 15:49:38 946

原创 Statistical Learning 统计学习 :回归任务,线性回归,最小二乘法,标准误差,R方

Statistical Learning 统计学习 :回归任务,线性回归,最小二乘法,标准误差,R方

2025-03-18 15:37:58 1072

原创 【统计基础2】population 与 sample 以及对应的参数形式

population 与 sample 以及对应的参数形式

2025-03-17 20:46:34 349

原创 【NLP】 12. 解决不同长度文本问题,RNN, LSTM,双重RNN,双向递归神经网络

RNN,LSTM,RNN变型

2025-03-17 12:47:46 1373

原创 【NLP】 11. 神经网络,线性模型,非线性模型,激活函数,感知器优化,正则化学习方法

神经网络,线性模型,非线性模型,激活函数,感知器优化,正则化学习方法

2025-03-17 11:26:02 1484

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除