想了解更多数据结构以及算法题,可以关注微信公众号“数据结构和算法”,每天一题为你精彩解答。也可以扫描下面的二维码关注
描述
背包问题是动态规划中最经典的一道算法题。背包问题的种类比较多,我们先来看一个最简单的背包问题-基础背包。他是这样描述的。
有N件物品和一个容量为V的包,第i件物品的重量是w[i],价值是v[i],求将哪些物品装入背包可使这些物品的重量总和不能超过背包容量,且价值总和最大。我们先来举个例子分析一下
举例分析
假设我们背包可容纳的重量是4kg,有3样东西可供我们选择,一个是高压锅有4kg,价值300元,一个是风扇有3kg,价值200元,最后一个是一双运动鞋有1kg,价值150元。问要装哪些东西在重量不能超过背包容量的情况下价值最大。如果只装高压锅价值才300元,如果装风扇和运动鞋价值将达到350元,所以装风扇和运动鞋才是最优解,我们来画个图分析一下
我们上面选择的顺序是:运动鞋→高压锅→风扇,如果我们改变选择的顺序,结果会不会改变,比如我们选择的顺序是:风扇→运动鞋→高压锅,我们还是来画个图看一下
我们发现无论选择顺序怎么改变都不会改变最终的结果。
数据测试:
public static void main(String[] args) {
System.out.println("最终结果是:" + packageProblem1());
}
public static int packageProblem1() {
int packageContainWeight = 4;//包最大可装重量
int[] weight = {1, 4, 3};//3个物品的重量
int[] value = {150, 300, 200};//3个物品的价值
int[][] dp = new int[weight.length + 1][packageContainWeight + 1];
for (int i = 1; i <= value.length; i++) {
for (int j = 1; j <= packageContainWeight; j++) {
if (j >= weight[i - 1]) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
Util.printTwoIntArrays(dp);//这一行仅做打印观测数据,也可以去掉
return dp[weight.length][packageContainWeight];
}
运行结果
和我们上面分析的完全一致。(为了测试方便,这里的所有数据我都是写死的,我们也可以把这些数据提取出来,作为函数参数传进来。)
空间优化:
其实这题还可以优化一下,这里的二维数组我们每次计算的时候都是只需要上一行的数字,其他的我们都用不到,所以我们可以用一维空间的数组来记录上一行的值即可,但要记住一维的时候一定要逆序,否则会导致重复计算。我们来看下代码
public static int packageProblem2() {
int packageContainWeight = 4;
int[] weight = {1, 4, 3};
int[] value = {150, 300, 200};
int[] dp = new int[packageContainWeight + 1];
for (int i = 1; i <= value.length; i++) {
for (int j = packageContainWeight; j >= 1; j--) {
if (j - weight[i - 1] >= 0)
dp[j] = Math.max(dp[j], dp[j - weight[i - 1]] + value[i - 1]);
}
Util.printIntArrays(dp);
System.out.println();
}
return dp[packageContainWeight];
}
注意:
我们看到第7行在遍历重量的时候采用的是逆序的方式,因为第9行在计算dp[j]的值的时候,数组后面的值会依赖前面的值,而前面的值不会依赖后面的值,如果不采用逆序的方式,数组前面的值更新了会对后面产生影响。
运行结果
C++:
#include<iostream>
#include <algorithm>
using namespace std;
int main()
{
int weight[] = { 1,4,3 };
int value[] = {150, 300, 200 };
int packageContainWeight = 4;
int dp[4][5]= { { 0 } };
for (int i = 1; i <4 ; i++)
{
for (int j = 1; j < 5; j++)
{
if (j >= weight[i - 1])
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);
else
dp[i][j] = dp[i - 1][j];
}
}
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 5; j++)
{
cout << dp[i][j] << ' ';
}
cout << endl;
}
return 0;
}
运行结果
递归写法:
除了上面的两种写法以外,我们还可以使用递归的方式,代码中有注释,有兴趣的可以自己看,就不在详细介绍。
int[] weight = {1, 4, 3};//3个物品的重量
int[] value = {150, 300, 200};//3个物品的价值
// i:处理到第i件物品,j可容纳的重量
public int packageProblem3(int i, int j) {
if (i == -1)
return 0;
int v1 = 0;
if (j >= weight[i]) {//如果剩余空间大于所放的物品
v1 = packageProblem3(i - 1, j - weight[i]) + value[i]; //选第i件
}
int v2 = packageProblem3(i - 1, j);//不选第i件
return Math.max(v1, v2);
}