算法学习网址:wansuanfa.com (玩算法的拼音)
这题是LeetCode的第200题:岛屿的数量,难度为中等,一网友在小鹏汽车二面的时候遇到过这题,另一网友在下面回复:这也太狠了。
其实这题难度不是很大,我觉得还不算狠。除了在小鹏汽车遇到过以外,还有网友在字节,华为,微软等大厂也都遇到过,我们来看下。
问题描述
来源:LeetCode第200题
难度:中等
给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例1:
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1
示例2:
输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3
解决思路
这题让求的是岛屿的数量,如果当前位置是1表示他是陆地,一个陆地就是一个岛屿,但如果多个陆地相连,他们也只能算一个岛屿,不能叠加。陆地相连只能由上下左右4个方向相邻的陆地连接而成。
这题有三种解决方式,一种是使用BFS,一种是使用DFS,还一种是使用并查集。
BFS(广度优先搜索)的解题思路就是遍历数组中的每一个位置,如果是1,说明是岛屿,岛屿的数量就要加1,然后把当前位置变为0,接着再把它上下左右4个方向上如果有1的也都变成0,一直重复上面的步骤,直到相邻的都没有1为止,我们来看下代码。
public int numIslands(char[][] grid) {
int count = 0;// 统计岛屿的个数
// 两个for循环遍历每一个位置
for (int i = 0; i < grid.length; i++)
for (int j = 0; j < grid[0].length; j++) {
// 只有当前位置是1才开始计算
if (grid[i][j] == '1') {
count++; //如果当前位置是1,岛屿的数量加1
// 然后通过bfs把当前位置的上下左右4个位置为1的
// 都要置为0,因为他们是连着一起的算一个岛屿
bfs(grid, i, j);
}
}
return count;
}
private void bfs(char[][] grid, int x, int y) {
grid[x][y] = '0'; // 把当前位置先置为0
int m = grid.length;
int n = grid[0].length;
// 使用队列,存储的是位置坐标
Queue<int[]> queue = new LinkedList<>();
// 坐标转化的值存放到队列中
queue.add(new int[]{x, y});
// 方向数组
int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
while (!queue.isEmpty()) {
int[] p = queue.poll();// 出队
// 遍历当前位置的上下左右4个方向,注意不能越界,如果
// 是1,把它他变为0,然后添加到队列中。
for (int[] dir : dirs) {
int i = p[0] + dir[0];
int j = p[1] + dir[1];
// 不能越界。
if (i < 0 || i >= m || j < 0 || j >= n || grid[i][j] != '1')
continue;
grid[i][j] = '0';
queue.add(new int[]{i, j});
}
}
}
DFS(深度优先搜索)是沿着一条路径一直走下去,当遇到终止条件的时候才会返回。解题思路和BFS类似,前面代码都一样,我们主要看下DFS函数中的代码。
public void dfs(char[][] grid, int i, int j) {
// 边界条件判断,不能越界
if (i < 0 || i >= grid.length || j < 0 ||
j >= grid[0].length || grid[i][j] == '0')
return;
// 把当前格子置为0,然后再从他的上下左右4个方向继续遍历
grid[i][j] = '0';
dfs(grid, i - 1, j);//上
dfs(grid, i + 1, j);//下
dfs(grid, i, j - 1);//左
dfs(grid, i, j + 1);//右
}
除了上面介绍的两种方式以外我们还可以使用并查集,刚开始的时候每一个为1的位置都是一个单独的连通分量,我们只需要把相邻的连通分量连接起来,最后返回连通分量的个数即可,代码就不在写了,有兴趣的可以看下我的书中《算法秘籍》第12章关于并查集的知识。
-------------------------end-------------------------
笔者简介
博哥,真名:王一博,毕业十多年,《算法秘籍》作者,专注于数据结构和算法的讲解,在全球30多个算法网站中累计做题2000多道,在公众号中写算法题解700多题,对算法题有自己独特的解题思路和解题技巧,喜欢的可以给个关注,也可以下载我整理的1000多页的PDF算法文档。