24校招,小鹏汽车自动驾驶测试工程师二面

前言

大家好,我是chowley,今天回顾一下,之前参加的自动驾驶测试工程师面试

时间:40min

平台:飞书

过程

  1. 自我介绍
  2. 实习经历
  3. 拿了哪些offer,为啥还在面?
  4. 加入一个公司,你期望得到哪些培养?
  5. 你现在负责的工作?
  6. 开发方面做了哪些?
  7. 说一下你学自动化测试的进展
  8. 接口端和web端的测试有哪些区别?
  9. 还面了哪些公司?
  10. 拿了什么类型的offer?
  11. 薪酬和岗位哪个是重点?
  12. 为啥投这个岗位?
  13. 机器学习自己学的吗?
  14. 学了多久发的论文?
  15. 为啥没考研或保研?
  16. 你对自动驾驶还有哪些了解?
  17. 你希望的工作内容偏向哪方面?软件还是整车测试?
  18. 整车测试和单元测试哪个更难?
  19. 对小鹏了解吗?
  20. offer选择,
### 关于小汽车开源代码及相关示例 目前,公开的小汽车官方并未完全开放其核心自动驾驶或其他车辆控制系统的源码。然而,在类似的开源项目中可以找到一些与智能驾驶、自动泊车等功能相关的代码和技术实现方式作为参考[^1]。 以下是一个基于假设的开源框架 `x9-open-source` 的简化版本,该框架可能类似于小汽车所使用的架构设计: #### 假设的项目目录结构 ```plaintext x9-open-source/ │ ├── src # 主代码库 │ ├── main.py # 项目的入口文件,用于启动应用 │ └── modules # 包含各个功能模块的子目录 │ ├── driving_assist # 智能驾驶辅助模块 │ │ ├── autopark.py # 自动泊车算法实现 │ │ └── lane_detection.py # 车道检测算法 │ ├── user_interface # 用户界面相关代码 │ └── vehicle_control # 车辆控制逻辑 │ ├── motor_control.py # 动力控制系统 │ └── steering_control.py # 方向盘控制系统 │ ├── config # 配置文件夹 │ ├── app.config # 应用配置 │ └── system.config # 系统级别配置 │ ├── docs # 文档和教程 │ ├── README.md # 项目介绍和快速入门 │ └── usage_guide.md # 使用指南 │ ├── tests # 测试文件夹 │ ├── unit_tests # 单元测试 │ └── integration_tests # 集成测试 │ └── requirements.txt # 项目依赖列表 ``` 上述目录结构中的 `autopark.py` 文件可能是自动泊车功能的核心实现之一。下面展示一个简化的自动泊车算法伪代码示例: #### 自动泊车算法伪代码示例 ```python import cv2 import numpy as np def detect_parking_space(image): """ 检测图像中的停车位位置。 :param image: 输入摄像头捕获的画面 (numpy array) :return: 返回停车位坐标 [(x1, y1), (x2, y2)] """ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150, apertureSize=3) lines = cv2.HoughLinesP(edges, rho=1, theta=np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10) parking_spaces = [] if lines is not None: for line in lines: x1, y1, x2, y2 = line[0] parking_spaces.append(((x1, y1), (x2, y2))) return parking_spaces def execute_autopark(vehicle_position, target_position): """ 执行自动泊车操作。 :param vehicle_position: 当前车辆的位置 (tuple) :param target_position: 目标停车位的位置 (tuple) :return: 是否成功完成停车 (bool) """ distance_to_target = calculate_distance(vehicle_position, target_position) while distance_to_target > 0.5: # 如果距离目标超过阈值,则继续调整 adjust_steering_angle(target_position) # 调整方向盘角度 control_motor_speed() # 控制电机速度 update_vehicle_position() distance_to_target = calculate_distance(vehicle_position, target_position) return True if __name__ == "__main__": camera_feed = capture_camera_image() # 获取实时视频流画面 spaces = detect_parking_space(camera_feed) if spaces: selected_space = choose_best_parking_space(spaces) # 选择最佳车位 success = execute_autopark(get_current_vehicle_position(), selected_space) print(f"Parked successfully: {success}") ``` 此代码仅为示意用途,实际生产环境下的自动泊车系统会更加复杂并涉及更多细节处理,例如传感器融合数据解析、路径规划以及动态障碍物避让等。 对于类似小汽车这样的企业级项目而言,除了基础的功能开发外还需要关注性能调优和服务稳定性保障等方面的工作内容[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SoupV7

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值