《征服数据结构》FHQ-Treap

摘要:

1,FHQ Treap的介绍

2,FHQ Treap的两种分裂方式

3,FHQ Treap的合并

4,FHQ Treap节点插入

5,FHQ Treap节点删除和区间删除

6,FHQ Treap节点搜索

7,FHQ Treap计算节点排名

8,FHQ Treap查找排名第 k 的节点

9,FHQ Treap查找前驱节点

10,FHQ Treap查找后继节点

1,FHQ Treap的介绍

FHQ Treap又名无旋Treap,是一种不需要旋转的平衡树,它的每个节点都有两个属性,一个是满足二叉搜索树的,一个是满足堆的,其中满足堆的属性是随机生成的,和我们前面讲的《Treap》类似,只不过FHQ Treap是不需要旋转的,它的所有的操作都是基于树的分裂与合并

FHQ Treap也是属于二叉搜索树的一种,在学习FHQ Treap之前最好先看下《二叉搜索树》《Treap》《笛卡尔树》。我们先来看下节点类。

Java 代码:

class Node {
    int val;// 节点值
    int priority;// 节点优先级,随机生成的
    int size;// 节点个数
    Node left, right;// 左子树和右子树

    Node(int val) {
        this.val = val;
        this.priority = new Random().nextInt();
        this.size = 1;
    }
}

C++ 代码:

struct Node {
    int val;// 节点值
    int priority;// 节点优先级,随机生成的
    int size;// 节点个数
    Node *left = nullptr, *right = nullptr;// 左子树和右子树
    // 节点优先级priority,满足堆的特性,随机生成的
    Node(int val) : val(val), priority(rand()), size(1) {}
};

节点类和前面讲的《Treap》类似,只不过这里多了一个属性size,它记录的是以当前节点为根节点的子树中节点的个数,如下图所示:

outside_default.png

Java 代码:

private Node root;// 根节点

// 获取节点个数
public int getSize(Node node) {
    return node == null ? 0 : node.size;
}

// 更新节点个数
private void updateSize(Node node) {
    if (node == null)
        return;
    // 以当前节点为根节点的子树中节点个数。
    node.size = getSize(node.left) + getSize(node.right) + 1;
}

C++ 代码

Node *root = nullptr;// 根节点

// 获取节点个数
int getSize(Node *node) {
    return node == nullptr ? 0 : node->size;
}

// 更新节点个数
void updateSize(Node *node) {
    if (node == nullptr) return;
    // 以当前节点为根节点的子树中节点个数。
    node->size = getSize(node->left) + getSize(node->right) + 1;
}

2,FHQ Treap的两种分裂方式

分裂就是把一棵树分成两棵树,FHQ Treap的分裂主要有两种方式,一种是按值分裂,一种是按大小分裂

1,按值分裂:根据值val把一棵树分裂成两棵树,一棵树的节点值全部小于等于val,另外一棵树的节点值全部大于val。

2,按大小分裂:根据节点个数size分裂成两棵树,一棵树的节点个数为size,另外一棵为剩下的。

我们先来看下按值分裂,如下图所示,是按值为 5 进行分裂,从上往下不好分,我们采用递归的方式从下往上分。分裂之后左边这棵树所有节点值都小于等于 5 ,右边这棵树所有节点值都大于 5 。(图中圆圈内的是节点的值,满足二叉搜索树的特性,圆圈外的是节点的优先级,满足堆的特性)。

outside_default.png

outside_default.png

outside_default.png

在来看下代码,分裂的时候还要更新节点的个数。

Java 代码:

// 根据值val分裂
private Node[] splitByVal(int val) {
    return splitByVal(root, val);
}

/**
 * 一棵二叉树分裂成两棵子树,其中一棵子树的所有节点都
 * 小于等于val,另一棵子树的所有节点都大于val。
 *
 * @param node 待分裂的二叉树
 * @param val  根据当前值分裂
 * @return 分裂之后的两棵子树
 */
private Node[] splitByVal(Node node, int val) {
    if (node == null) {// 如果节点为空,直接返回两个空的子树。
        return new Node[]{null, null};
    }
    // nodes[0]是分裂之后左边的树,nodes[1]是分裂之后右边的树。
    Node[] nodes;
    if (node.val <= val) {
        // 当前节点值小于等于val,所以它是分裂之后的左树,
        // 它的右子树应该连到分裂后的左树。
        nodes = splitByVal(node.right, val);
        node.right = nodes[0];
        nodes[0] = node;
    } else {
        // 当前节点值大于val,所以它是分裂之后的右树,原理同上。
        nodes = splitByVal(node.left, val);
        node.left = nodes[1];
        nodes[1] = node;
    }
    updateSize(node);// 更新节点node
    return nodes;// 返回分裂后的两棵子树
}

C++ 代码:

/**
 * 一棵二叉树分裂成两棵子树,其中一棵子树的所有节点都
 * 小于等于val,另一棵子树的所有节点都大于val。
 *
 * @param node 待分裂的二叉树
 * @param val  根据当前值分裂
 * @return 分裂之后的两棵子树
 */
vector<Node *> splitByVal(Node *node, int val) {
    if (node == nullptr) {// 如果节点为空,直接返回两个空的子树。
        return {nullptr, nullptr};
    }
    // nodes[0]是分裂之后左边的树,nodes[1]是分裂之后右边的树。
    vector<Node *> nodes;
    if (node->val <= val) {
        // 当前节点值小于等于val,所以它是分裂之后的左树,
        // 它的右子树应该连到分裂后的左树。
        nodes = splitByVal(node->right, val);
        node->right = nodes[0];
        nodes[0] = node;
    } else {
        // 当前节点值大于val,所以它是分裂之后的右树,原理同上。
        nodes = splitByVal(node->left, val);
        node->left = nodes[1];
        nodes[1] = node;
    }
    updateSize(node);// 更新节点node
    return nodes;// 返回分裂后的两个子树
}

// 根据值val分裂
vector<Node *> splitByVal(int val) {
    return splitByVal(root, val);
}

再来看下按照大小分裂,代码和上面类似,分裂之后的左树中节点个数是 k ,剩下的节点在右树上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据结构和算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值